用户名: 密码: 验证码:
正极材料LiFePO_4倍率性能提升方法研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in improving the rate performance of LiFePO_4 cathode material
  • 作者:张磊 ; 朱继平 ; 吴玉程
  • 英文作者:ZHANG Lei;ZHU Jiping;WU Yucheng;School of Materials Science and Engineering,Hefei University of Technology;
  • 关键词:正极材料 ; 磷酸铁锂 ; 晶体结构 ; 倍率性能 ; 改性方法
  • 英文关键词:cathode material;;LiFePO4;;crystal structure;;rate performance;;modification methods
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:合肥工业大学材料科学与工程学院;
  • 出版日期:2019-02-28
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.425
  • 基金:国家自然科学基金资助项目(21373074)
  • 语种:中文;
  • 页:GNCL201902010
  • 页数:10
  • CN:02
  • ISSN:50-1099/TH
  • 分类号:66-75
摘要
橄榄石结构的磷酸铁锂(LiFePO_4)因其容量大、循环寿命长、成本低和安全等优点,被认为是一种很有前途的高能量密度正极材料。然而,磷酸铁锂的自身晶体结构导致该材料存在电子电导率差、离子扩散系数小和振实密度低等问题,制约了其在锂离子动力电池中的应用。综述了近些年来国内外提高LiFePO_4正极材料倍率性能的方法,其中包括碳包覆和元素掺杂,同时对上述方法的优缺点进行了讨论。
        Olivine lithium iron phosphate(LiFePO_4)is considered as a promising high power density cathode material,due to its high capacity,long cycle life,low cost,and safety.However,the instinct crystal structure of LiFePO_4 induces low electronic conductivity,poor ions diffusion coefficient and low tap density,which limits its commercial application in lithium-ion power batteries.In this review,the methods on enhancing the rate performance of LiFePO_4 cathode material,including carbon coating and elements doping were summarized.Meanwhile,the advantages and disadvantages of above methods are also discussed.
引文
[1] Croguennec L,Palacin M R.Recent achievements on inorganic electrode materials for lithium-ion batteries[J].Journal of the American Chemical Society,2015,137(9):3140-3156.
    [2] Wang J,Sun X.Olivine LiFePO4:the remaining challenges for future energy storage[J].Energy Environ Sci,2015,8:1110-1138.
    [3] Padhi A K,Goodenough J B,Nanjundaswamy K S.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [4] Fisher C A J,Prieto V M H,Islam M S.Lithium battery materials LiMPO4(M=Mn,Fe,Co,and Ni):insights into defect association,transport mechanisms,and doping behavior[J].Chemistry of Materials,2008,20(18):5907-5915.
    [5] Padhi A K,Nanjundaswamy K S,Masquelier C,et al.Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates[J].Journal of the Electrochemical Society,1997,144(5):1609-1613.
    [6] Padhi A K,Nanjundaswamy K S,Masquelier C,et al.Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J].Journal of the Electrochemical Society,1997,144(8):2581-2586.
    [7] Yuan L X,Wang Z H,Zhang W X,et al.Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J].Energy Environ Sci,2011,4(2):269-284.
    [8] Yu Feng,Ge Shenguang,Li Bing,et al.Three-dimensional porous LiFePO4:design,architectures and high performance for lithium ion batteries[J].Current Inorganic Chemistry,2012,2(2):194-212.
    [9] Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.
    [10] Wu Y P,Rahm E,Holze R.Carbon anode materials for lithium ion batteries[J].J Power Sources,2003,114(2):228-236.
    [11] Xu Y N,Chung S Y,Chiang Y M,et al.Electronic structure and electrical conductivity of undoped LiFePO4[J].Electrochemical and Solid-State Letter,2004,7(6):A131-A134.
    [12] Gao F,Tang Z.Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries[J].Electrochimica Acta,2008,53(15):5071-5075.
    [13] Churikov A V,Ivanishchev A V,Ivanishcheva I A,et al.Determination of lithium diffusion coefficient in LiFePO4electrode by galvanostatic and potentiostatic intermittent titration techniques[J].Electrochim Acta,2010,55(8):2939-2950.
    [14] Li W,Hwang J,Chang W,et al.Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance[J].The Journal of Supercritical Fluids,2016,116:164-171.
    [15] Hwang J,Kong K C,Chang W,et al.New liquid carbon dioxide based strategy for high energy/power density LiFePO4[J].Nano Energy,2017,36:398-410.
    [16] Wang L,Liang G C,Ou X Q,et al.Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction[J].Journal of Power Sources,2009,189(1):423-428.
    [17] Ju S H,Kang Y C.LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black[J].Materials Chemistry and Physics,2008,107(2-3):328-333.
    [18] Chen X,Jia B,Cai B,et al.Graphenized carbon nanofiber:a novel light-trapping and conductive material to achieve an efficiency breakthrough in silicon solar cells[J].Advanced Materials,2015,27(5):849-855.
    [19] Sun H,Deng J,Qiu L,et al.Recent progress in solar cells based on one-dimensional nanomaterials[J].Energy&Environmental Science,2015,8(4):1139-1159.
    [20] Rangom Y,Tang X,Nazar L F.Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance[J].ACS Nano,2015,9(7):7248-7255.
    [21] Wang T,Song D,Zhao H,et al.Facilitated transport channels in carbon nanotube/carbon nanofiber hierarchical composites decorated with manganese dioxide for flexible super capacitors[J].Journal of Power Sources,2015,274:709-717.
    [22] Liu X M,Huang Z D,Oh S W,et al.Carbon nanotube(CNT)-based composites as electrode material for rechargeable Li-ion batteries:a review[J].Composites Science&Technology,2012,72(2):121-144.
    [23] Yang F,Cheng K,Xiao X,et al.Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell[J].Journal of Power Sources,2014,245(1):89-94.
    [24] Cui H F,Du L,Guo P B,et al.Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode[J].Journal of Power Sources,2015,283:46-53.
    [25] Coleman J N,Khan U,Blau W J,et al.Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites[J].Carbon,2006,44(9):1624-1652.
    [26] Zhao Y,Li X,Yan B,et al.Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries:a review[J].Journal of Power Sources,2015,274:869-884.
    [27] Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(21):215502.
    [28] Ganter M J,DiLeo R A,Schauerman C M,et al.Differential scanning calorimetry analysis of an enhanced LiNi0.8Co0.2O2cathode with single wall carbon nanotube conductive additives[J].Electrochimica Acta,2011,56(21):7272-7277.
    [29] Li X,Kang F,Shen W.Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3 O2cathode for rechargeable lithium batteries[J].Carbon,2006,44(7):1334-1336.
    [30] Thorat I V,Mathur V,Harb J N,et al.Performance of carbon-fiber-containing LiFePO4cathodes for high-power applications[J].Journal of Power Sources,2006,162(1):673-678.
    [31] Li X,Kang F,Bai X,et al.A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries[J].Electrochemistry Communications,2007,9(4):663-666.
    [32] Xie X L,Mai Y W,Zhou X P.Dispersion and alignment of carbon nanotubes in polymer matrix:a review[J].Polymeric Materials Science&Engineering,2005,49(4):89-112.
    [33] Eder D.Carbon nanotube-inorganic hybrids[J].Chemical Reviews,2010,110(3):1348-1385.
    [34] Muraliganth T,Murugan A V,Manthiram A.Nanoscale networking of LiFePO4nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries[J].Journal of Materials Chemistry,2008,18(46):5661-5668.
    [35] Kavan L,Bacsa R,Tunckol M,et al.Multi-walled carbon nanotubes functionalized by carboxylic groups:activation of TiO2(anatase)and phosphate olivines(LiMnPO4,LiFePO4)for electrochemical Li-storage[J].Journal of Power Sources,2010,195(16):5360-5369.
    [36] Gong C,Xue Z,Wang X,et al.Poly(ethylene glycol)grafted multi-walled carbon nanotubes/LiFePO4composite cathodes for lithium ion batteries[J].Journal of Power Sources,2014,246(3):260-268.
    [37] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [38] Stoller M D,Park S,Zhu Y,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.
    [39] Bolotin K I,Sikes K J,Jiang Z,et al.Ultrahigh electron mobility in suspended grapheme[J].Solid State Communications,2008,146(9):351-355.
    [40] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
    [41] Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [42] Chen D,Feng H,Li J.Graphene oxide:preparation,functionalization,and electrochemical applications[J].Chemical Reviews,2012,112(11):6027-6053.
    [43] Ferrari A C,Basko D M.Raman spectroscopy as a versatile tool for studying the properties of graphene[J].Nature Nanotechnology,2013,8(4):235-246.
    [44] Bi H,Huang F,Tang Y,et al.Study of LiFePO4cathode modified by graphene sheets for high-performance lithium ion batteries[J].Electrochimica Acta,2013,88(224):414-420.
    [45] Pumera M.Electrochemistry of graphene,graphene oxide and other graphenoids:review[J].Electrochemistry Communications,2013,36(6):14-18.
    [46] Yang J,Wang J,Tang Y,et al.LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries:impact of stacked graphene and unfolded graphene[J].Energy&Environmental Science,2013,6(5):1521-1528.
    [47] Gui X,Zeng Z,Zhu Y,et al.Three-dimensional carbon nanotube sponge-array architectures with high energy dissipation[J].Advanced Materials,2014,26(8):1248-1253.
    [48] Kaur S,Raravikar N,Helms B A,et al.Microwave-assisted synthesis of six-membered O,O-heterocycles[J].Synthetic Communications,2014,44(18):2615-2644.
    [49] Xu Y,Sheng K,Li C,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324-4330.
    [50] Zhi J,Zhao W,Liu X,et al.Highly conductive ordered mesoporous carbon based electrodes decorated by 3Dgraphene and 1Dsilver nanowire for flexible super capacitor[J].Advanced Functional Materials,2014,24(14):2013-2019.
    [51] Kulkarni S B,Patil U M,Shackery I,et al.High-performance super capacitor electrode based on a polyaniline nanofibers/3Dgraphene framework as an efficient charge transporter[J].Journal of Materials Chemistry A,2014,2(14):4989-4998.
    [52] Xing W,Qiao S Z,Ding R G,et al.Superior electric double layer capacitors using ordered mesoporous carbons[J].Carbon,2006,44(2):216-224.
    [53] Wang D W,Li F,Liu M,et al.3Daperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J].Angewandte Chemie,2010,121(9):1553-1553.
    [54] Zhang H,Cao G,Yang Y.Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries[J].Energy&Environmental Science,2009,2(9):932-943.
    [55] Jiang H,Lee P S,Li C.3Dcarbon based nanostructures for advanced super capacitors[J].Energy&Environmental Science,2012,6(1):41-53.
    [56] Schneider J J,Khanderi J,Popp A,et al.Hybrid architectures from 3D aligned arrays of multiwall carbon nanotubes and nanoparticulate LiCoPO4:synthesis,properties and evaluation of their electrochemical performance as cathode materials in lithium ion batteries[J].European Journal of Inorganic Chemistry,2011,2011(28):4349-4359.
    [57] Dimesso L,Forster C,Jaegermann W,et al.Developments in nanostructured LiMPO4(M=Fe,Co,Ni,Mn)composites based on three dimensional carbon architecture[J].Cheminform,2012,41(15):5068-5080.
    [58] Tang Y,Huang F,Bi H,et al.Highly conductive threedimensional graphene for enhancing the rate performance of LiFePO4cathode[J].Journal of Power Sources,2012,203(203):130-134.
    [59] Mo R,Tung S O,Lei Z,et al.Pushing the limits:3D layer-by-layer-assembled composites for cathodes with160Cdischarge rates[J].ACS Nano,2015,9(5):5009-5017.
    [60] Li J,Qu Q,Zhang L,et al.A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings[J].Journal of Alloys and Compounds,2013,579:377-383.
    [61] Zhang Y,Huo Q Y,Du P P,et al.Advances in new cathode material LiFePO4for lithium-ion batteries[J].Synthetic Metals,2012,162(13-14):1315-1326.
    [62] Chung S Y,Bloking J T,Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nature Materials,2002,1(2):123-128.
    [63] Chung S Y,Chiang Y M.Microscale measurements of the electrical conductivity of doped LiFePO4[J].Electrochemical and Solid-State Letters,2003,6(12):A278-A281.
    [64] Li L,Li X,Wang Z,et al.Stable cycle-life properties of Ti-doped LiFePO4compounds synthesized by co-precipitation and normal temperature reduction method[J].Journal of Physics and Chemistry of Solids,2009,70(1):238-242.
    [65] Herle P S,Ellis B,Coombs N,et al.Nano-network electronic conduction in iron and nickel olivine phosphates[J].Nature Materials,2004,3(3):147-152.
    [66] Delacourt C,Wurm C,Laffont L,et al.Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4composites[J].Solid State Ionics,2006,77(3-4):333-341.
    [67] Ma Z,Shao G,Wang G,et al.Effects of Nb-doped on the structure and electrochemical performance of LiFePO4/C composites[J].Journal of Solid State Chemistry,2014,210:232-237.
    [68] Zhang Dongyun,Zhang Peixin,Song Shenhua,et al.Electronic structure of LiFePO4doped with Ni and Mg[J].The Chinese Journal of Nonferrous Metals,2012,22(8):2317-2325(in Chinese).张冬云,张培新,宋中华,等.镍镁掺杂LiFePO4的电子结构[J].中国有色金属学报,2012,22(8):2317-2325.
    [69] Lu Xiaoting,Li Donglin,Fan Xiaoyong,et al.Study on structure and rate performance of LiFePO4/C composite cathode material via Na doping[J].Acta Chimica Sinica,2012,70(3):223-228(in Chinese).陆晓挺,李东林,樊小勇,等.Na掺杂对LiFePO4/C复合正极材料的结构和倍率性能的影响[J].化学学报,2012,70(3):223-228.
    [70] Abbate M,Lala S M,Montoro L A,et al.Ti-,Al-and Cu-doping induced gap states in LiFePO4[J].Electrochem and Solid-State Letters,2005,8(6):A288-A290.
    [71] Wang D,Li H,Shi S,et al.Improving the rate performance of LiFePO4 by Fe-site doping[J].Electrochimica Acta,2005,50(14):2955-2958.
    [72] Prosini P P,Zane D,Pasquali M.Improved electrochemical performance of a LiFePO4-based composite cathode[J].Electrochimica Acta,2001,46(23):3517-3523.
    [73] Li Hong,Wang Zhaoxiang,Chen Liquan,et al.Research on advanced materials for Li-ion batteries[J].Advanced Materials,2009,21(45):4593-4607.
    [74] Amol N,Jian Z,Chao G,et al.Rapid and facile synthesis of Mn doped porous LiFePO4/C from iron carbonyl complex[J].Journal of the Energy Institute,2016,89:21-29.
    [75] Li C,Hua N,Wang C,et al.Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances[J].Journal of Alloys and Compounds,2011,509:1897-1900.
    [76] Gupta R,Saha S,Tomar M,et al.Effect of manganese doping on conduction in olivine LiFePO4[J].Journal of Materials Science:Materials in Electronics,2017,28:5192-5199.
    [77] Qing R,Yang M C,Meng W.Synthesis of LiNixFe1-x PO4solid solution as cathode materials for lithium ion batteries[J].Electrochimica Acta,2013,108:827-832.
    [78] Shi Yue,Lu Mian,Zhan Gang,et al.Electrochemical performance of Ni 2+-doping LiFePO4 by combustion method[J].New Chemical Materials,2015,43(5):86-88(in Chinese).石月,鲁冕,詹刚,等.燃烧法合成Ni 2+掺杂磷酸铁锂的电化学性能研究[J].化工新型材料,2015,43(5):86-88.
    [79] Xiao Zhiping,Wang Ying,Tang Renheng,et al.Effect of Ni,Cr doping on the electrochemical performances of LiFePO4/C[J].Materials Research and Application,2014,8(4):232-236(in Chinese).肖志平,王英,唐仁衡,等.Ni,Cr掺杂对LiFePO4/C电化学性能的影响[J].材料研究与应用,2014,8(4):232-236.
    [80] An Bonan,Song Xiong,Ru Qiang,et al.First-principle investigations of Na-As doping in cathode materials for Li-Ion batteries of LiFePO4[J].Journal of South China Normal University,2014,46(6):47-52(in Chinese).安柏楠,宋雄,汝强,等.Na,As共掺杂锂离子电池正极材料LiFePO4的第一性原理研究[J].华南师范大学学报,2014,46(6):47-52.
    [81] Wang Ting,Dong Chao,Xiong Huayu,et al.Synthesis and electrochemical performance of F&Zn co-doped LiFePO4/C cathode material for lithium-ion batteries[J].Journal of Hubei University,2016,38(6):527-532(in Chinese).王婷,董超,熊华玉,等.氟、锌离子共掺杂的LiFePO4/C阴极材料的制备及其在锂离子电池中的电化学性能研究[J].湖北大学学报,2016,38(6):527-532.
    [82] Yang X,Hu Z,Liang J.Effects of sodium and vanadium co-doping on the structure and electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries[J].Ceramics International,2015,41:2863-2868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700