用户名: 密码: 验证码:
基于非逆流传热的热交换网络系统的3E优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3E Optimization of heat exchanger network system based on non-counterflow heat transfer
  • 作者:蒋宁 ; 郭风元 ; 韩文巧 ; 刘华菁 ; 林露
  • 英文作者:JIANG Ning;GUO Fengyuan;HAN Wenqiao;LIU Huajing;LIN Lu;College of Mechanical Engineering, Zhejiang University of Technology;
  • 关键词:热交换网络 ; 非逆流传热 ; 温差修正 ; 多目标优化 ; 非支配排序遗传算法(NSGA-Ⅱ)
  • 英文关键词:heat exchanger network;;non-counterflow heat transfer;;temperature difference correction;;multi-objective optimization;;non-dominated sorting genetic algorithm(NSGA-Ⅱ)
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:浙江工业大学机械工程学院;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:浙江省自然科学基金(LY18E060010);; 国家自然科学基金(51206147)
  • 语种:中文;
  • 页:HGJZ201902006
  • 页数:11
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:57-67
摘要
考虑非逆流传热对换热设备传热温差、壳数和面积的影响,对包含非逆流换热设备的热交换网络系统进行优化设计。基于非等温混合分流分级超结构,采用能源、经济和环境(3E)综合评价指标,引入温差修正系数,建立了热交换网络多目标混合整数非线性规划(MO-MINLP)模型,并基于非支配排序遗传算法(NSGA-Ⅱ)提出了系统性的求解策略和求解方法。应用案例研究表明,涉及非逆流传热的热交换网络,其优化设计结果与基于纯逆流换热假设的设计结果有很大区别,且仅对基于纯逆流换热假设的设计结果进行修正并不能得到最优解,必须在建模中考虑温差修正效应的影响,从而保证设计结果的优化性、可靠性和实用性;3E评价反映了热交换网络系统在经济、能耗和环境影响之间的权衡和约束关系,使系统的设计更加实际,同时多目标的优化方法不但可以获得与单目标经济优化相当的最经济的结果,而且提供了多样性的优化解集供选择,提高了设计的灵活性,可以满足不同的设计需求。
        Considering the non-counterflow effect on the heat transfer temperature difference,shell number and area of the heat exchanger,the heat exchanger network system involving the non-counterflow heat exchange is optimized.Based on the stage-wise superstructure with non-isothermal mixing and the comprehensive evaluation index of energy,economic and environmental(3E),a multi-objective mixed integer nonlinear programming(MO-MINLP)model for heat exchanger network optimization is established by introducing the correction factor of temperature difference.Systematic solution strategy and method based on non-dominated sorting genetic algorithm(NSGA-II)are proposed.A case study shows that the optimal design results of heat exchanger networks involving non-counterflow heat transfer are very different from those based on pure counterflow heat transfer hypothesis.The optimal solution can not be obtained only by modifying the design results based on pure counterflow heat transfer hypothesis.In order to ensure the optimization,reliability and practicability of the design results,the effect of temperature difference correction must be taken into account in the modeling.3E evaluation reflects the trade-offs and constraints between energy consumption,economic benefit,and environmental impact of the heat exchanger network system,and makes the design of the system more practical.At the same time,the multi-objective optimization method can not only get the most economical results as the singleobjective economic optimization,but also provide a variety of optimization solutions for choice,improve the flexibility of design,and can meet different design needs.
引文
[1] LINNHOFF B, HINDMARSH E. The pinch design method forheat exchanger networks[J]. Chemical Engineering Science, 1983,38(5):745-763.
    [2] YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneousoptimization models for heat integration—Ⅰ. Area and energytargeting and modeling of multi-stream exchangers[J]. Computers&Chemical Engineering, 1990, 14(10):1151-1164.
    [3] YEE T F, GROSSMANN I E. Simultaneous optimization modelsfor heat integration—Ⅱ. Heat exchanger network synthesis[J].Computers&Chemical Engineering, 1990, 14(10):1165-1184.
    [4]霍兆义,尹洪超,赵亮,等.国内换热网络综合方法研究进展与展望[J].化工进展, 2012, 31(4):726-731.HUI Z Y, YIN H C, ZHAO L, et al. Process and prospect for themethodology of heat exchanger network synthesis in China[J].Chemical Industry and Engineering Progress, 2012, 31(4):726-731.
    [5]郝艳红,冯杰,易群,等.典型煤基动力系统的3E分析[J].中国电机工程学报, 2013, 33(14):51-58.HAO Y H, FENG J, YI Q, et al. Energy, environment and economy(3E)analysis on typical coal-based power systems[J]. Proceedingsof the CSEE, 2013, 33(14):51-58.
    [6] SHIRAZI A, TAYLOR R A, WHITE S D, et al. Transientsimulation and parametric study of solar-assisted heating and cooling absorption systems:an energetic, economic andenvironmental(3E)assessment[J]. Renewable Energy, 2016, 86:955-971.
    [7] YI Q, FENG J, WU Y, et al. 3E(energy, environmental, andeconomy)evaluation and assessment to an innovative dual-gaspolygeneration system[J]. Energy, 2014, 66(2):285-294.
    [8] EINI S, SHAHHOSSEINI H, DELGARM N, et al. Multi-objectiveoptimization of a cascade refrigeration system:exergetic,economic, environmental, and inherent safety analysis[J]. AppliedThermal Engineering, 2016, 107:804-817.
    [9] CHEN C L, HUNG P S. Multicriteria synthesis of flexible heat-exchanger networks with uncertain source-stream temperatures[J].Chemical Engineering&Processing Process Intensification, 2005,44(1):89-100.
    [10] LóPEZ-MALDONADO L A, PONCE-ORTEGA J M, SEGOVIA-HERNáNDEZ J G. Multiobjective synthesis of heat exchangernetworks minimizing the cost and the environmental impact[J].Applied Thermal Engineering, 2011, 31(6/7):1099-1113.
    [11] AGARWAL A, GUPTA S K. Multiobjective optimal design of heatexchanger networks using new adaptations of the elitistnondominated sorting genetic algorithm, NSGA-[J]. Industrial&Engineering Chemistry Research, 2008, 47(10):3489-3501.
    [12] KANG L, LIU Y, LIANG X. Multi-objective optimization of heatexchanger networks based on analysis of minimum temperaturedifference and accumulated CO2emissions[J]. Applied ThermalEngineering, 2015, 87:736-748.
    [13]尹洪超,袁一,王晓云,等.换热网络非等温混合多目标同步最优综合[J].大连理工大学学报, 1995(5):639-643.YIN H C, YUAN Y, WANG X Y, et al. Multi-target simultaneousoptimization for non-isothermal mixing heat exchanger networksynthesis[J]. Journal of Dalian University of Technology, 1995(5):639-643.
    [14]尹清华,王文劲,华贲,等.采用双(多)壳程换热器来促进换热网络的进一步优化[J].化工进展, 1999, 18(2):5-7.YIN Q H, WANG W J, HUA B, et al. Promoting the optimizationof heat exchanger network in process industries in using multiple-shell heat exchanger[J]. Chemical Industry and EngineeringProgress, 1999, 18(2):5-7.
    [15]尹清华,王文劲,华贲,等.双(多)壳程换热器有利于工艺过程节能[J].石油炼制与化工, 1999(2):34-37.YIN Q H, WANG W J, HUA B, et al. Using double/multiple shellheat exchanger for energy conservation in process industries[J].Petroleum Processing and Petrochemicals, 1999(2):34-37.
    [16] SUN L, LUO X. Synthesis of multipass heat exchanger networksbased on pinch technology[J]. Computers&ChemicalEngineering, 2011, 35(7):1257-1264.
    [17] LI S J, YAO P J. Synthesis of heat exchanger network consideringmultipass exchangers[J]. Chinese Journal of ChemicalEngineering, 2001, 9(3):242-246.
    [18] GALLI M R, CERDA J. Synthesis of heat exchanger networksfeaturing a minimum number of constrained-size shells of 1-2type[J]. Applied Thermal Engineering, 2000, 20(15):1443-1467.
    [19]李绍军,修乃云,姚平经.基于壳程数最小年度化费用换热网络综合的研究[J].大连理工大学学报, 2000, 40(1):49-53.LI S J, XIU N Y, YAO P J. Study on synthesis of minimizingannual cost heat exchanger network on the basis of shells’number[J]. Journal of Dalian University of Technology, 2000, 40(1):49-53.
    [20] PONCE-ORTEGA J M, SERNA-GONZáLEZ M, JIMéNEZGUTIéRREZ A. Synthesis of multipass heat exchanger networksusing genetic algorithms[J]. Computers&Chemical Engineering,2008, 32(10):2320-2332.
    [21]赵野,孙琳,罗雄麟.多程换热网络综合与夹点技术研究进展[J].化工进展, 2012, 31(8):1685-1689.ZHAO Y, SUN L, LUO X L. Research advances in pinchtechnology and the synthesis of multipass heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2012, 31(8):1685-1689.
    [22] RAVAGNANI M A S S, SILVA A P, ARROYO P A, et al. Heatexchanger network synthesis and optimisation using geneticalgorithm[J]. Applied Thermal Engineering, 2005, 25(7):1003-1017.
    [23]孙琳,赵野,罗雄麟.基于夹点技术与超结构模型的多程换热网络最优综合[J].化工学报, 2014, 65(3):967-975.SUN L, ZHAO Y, LUO X L. Synthesis of multi-pass heatexchanger network based on pinch technology and superstructuremodel[J]. Journal of Chemical Industry and Engineering(China),2014, 65(3):967-975.
    [24] ALLEN B, SAVARD-GOGUEN M, GOSSELIN L. Optimizingheat exchanger networks with genetic algorithms for designingeach heat exchanger including condensers[J]. Applied ThermalEngineering, 2009, 29(16):3437-3444.
    [25] LAUKKANEN T, TVEIT T M, OJALEHTO V, et al. Aninteractive multi-objective approach to heat exchanger networksynthesis[J]. Computers&Chemical Engineering, 2010, 34(6):943-952.
    [26] IPCC2006. IPCC guidelines for national greenhouse gasinventories[EB/OL].[2008-07-12]. http://www.icc.ngggip.iges.or.jp/public/gl/invsl.html.
    [27] SMITH R. Chemical process:design and integration[M].Chichester:John Wiley&Sons Ltd., 2005.
    [28] AHMAD S, SMITH R. Targets and design for minimum number ofshells in heat exchanger networks[J]. Chemical EngineeringResearch&Design, 1989, 67(5):481-494.
    [29] GULYANI B B, KHANAM S, MOHANTY B. A new approach forshell targeting of a heat exchanger network[J]. Computers&Chemical Engineering, 2009, 33(9):1460-1467.
    [30]吕俊锋,肖武,王开锋,等.换热网络多目标综合优化算法研究进展[J].化工进展, 2016, 35(2):352-357.LüJ F, XIAO W, WANG K F, et al. Research progress onoptimization algorithms in multi-objective synthesis of heatexchanger networks[J]. Chemical Industry and EngineeringProgress, 2016, 35(2):352-357.
    [31] LI G Q, LUO Y S, XIA Y, et al. Improvement on the simultaneousoptimization approach for heat exchanger network synthesis[J].Industrial&Engineering Chemistry Research, 2012, 51(18):6455-6460.
    [32]林露.基于非支配排序遗传算法的换热网络多目标优化[D].杭州:浙江工业大学, 2013.LIN L. Multiobjective optimization of heat exchanger networkbased on nondominated sorting genetic algorithm[D]. Hangzhou:Zhejiang University of Technology, 2013.
    [33] Annex6. Additional information[EB/OL].[2012-04]. http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html.
    [34] BRIONES V, KOKOSSIS A C. Hypertargets:a conceptualprogramming approach for the optimisation of industrial heatexchanger networks-Ⅰ. Grassroots design and network complexity[J]. Chemical Engineering Science, 1999, 54(4):519-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700