用户名: 密码: 验证码:
隔离段尺度效应初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary study on scale effect of isolator
  • 作者:付秀文 ; 杜泉
  • 英文作者:FU Xiuwen;DU Quan;Science and Technology on Liquid Rocket Engine Laboratory;Xi'an Aerospace Propulsion Institute;
  • 关键词:超燃冲压发动机 ; 隔离段 ; 尺度效应
  • 英文关键词:scramjet;;isolator;;scale offect
  • 中文刊名:HJTJ
  • 英文刊名:Journal of Rocket Propulsion
  • 机构:液体火箭发动机技术重点实验室;西安航天动力研究所;
  • 出版日期:2019-02-15
  • 出版单位:火箭推进
  • 年:2019
  • 期:v.45;No.227
  • 基金:国家自然科学基金(11702205)
  • 语种:中文;
  • 页:HJTJ201901003
  • 页数:5
  • CN:01
  • ISSN:61-1436/V
  • 分类号:17-21
摘要
随着超燃冲压发动机规模不断扩大,隔离段尺度效应非常突出,利用准一维隔离段分析模型,对3种截面积的矩形截面和圆形截面隔离段的尺度效应进行计算分析。初步结果表明:隔离段入口边界层发展情况是影响压力分布及隔离段长度的重要因素;在给定的压升条件下,相同尺度的圆形截面隔离段比矩形截面隔离段长;隔离段长度不与入口水力直径呈线性关系,即隔离段长度不能几何缩比;隔离段尺度越大,尺度影响越显著。
        As the Scramjet engine becoming larger,the scale effect of isolator became remarkable.By using the quasi-one-dimensional model of isolator,the scale effects of the isolator with the rectangular and circular sections including three cross-sectional areas were evaluated numerically. The preliminary results show that the growth of entrance boundary layer significantly affects the pressure distribution and the length of isolator. Under the condtion of given pressure rise,the circular isolator is longer than the rectangular isolator if the scale is same. The isolator length is not linearly related to the entrance hydraulic diameter,which indicats that the isolator length can't be geometrically scaled with the engine size. The larger the isolator scale,the more signicant the scale effect.
引文
[1]张时空,李江,秦飞.两级入轨运载器RBCC动力系统内流道设计与性能计算[J].推进技术,2015,36(4):520-526.
    [2]MELVIN J,BULMAN.The rebirth of round hypersonic propulsion[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit.Sacramento,California:AIAA,2006.
    [3]WILLIAM H H,DAVID T P.Hypersonic airbreathing propulision[M].USA:AIAA,1994.
    [4]冯锦虎,高峰,何至林.超燃冲压发动机隔离段内附面层/激波串相互干扰研究[J].火箭推进,2010,36(2):5-9.FENG J H,GAO F,HE Z L.Investigation of boundary layer/shock wave train interference in a scramjet isolator[J].Journal of Rocket Propulsion,2010,36(2):5-9.
    [5]杨事民,唐豪,黄玥.超燃冲压发动机隔离段流场抗反压能力数值模拟[J].长春理工大学学报,2008,31(1):127-131.
    [6]HOEGER C,KING P I.CFD modeling of an isolator shock train in a scramjet engine[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit.Nashville:AIAA,2010.
    [7]LE D B,GOYNE C P.Experimental study of a dualmode scramjet isolator[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit.Nevada:AIAA,2005.
    [8]WANG C P,ZHANG K Y.Pressure distribution measurements in scramjet isolators under asymmetric supersonic flow[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Nevada:AIAA,2006.
    [9]WALTRUP P J,BILLIG F S.Prediction of precombustion wall pressure distributions in scramjet engines[J].Spacecraft Rockets,1973,10(9):620-622.
    [10]WALTRUP P J,BILLIG F S.Structure of shock waves in cylindrical ducts[J].AIAA Journal,1973,11(10):1404-1408.
    [11]LIN P,RAO G.Numerical analysis of normal shock train in a constant area isolator:AIAA91-2162[R].Reston:AIAA,1991.
    [12]LIN P,RAO G.Numerical investigation on shock wave/boundary layer interactions in a constant area diffuser at Mach 3:AIAA 91-1766[R].Reston:AIAA,1991.
    [13]AUSLENDER A H.An analytic performance investigation of mechanically back-pressured ramjet data[C]//JAN-NAF 34th Combustion Subcommittee/Propulsion Systems Hazards/Airbreathing Propulsion Subcommittee Joint Meetings.West Palm Beach,Florida:[s.n.],1997.
    [14]AUSLENDER A H.An analysis of the NASA direct-connect-module mach 5 ramjet database[C]//JANNAF,36th Combustion Subcommittee/Propulsion Systems Hazards/Airbreathing Propulsion Subcommittee Joint Meetings.Cocoa Beach,Florida:[s.n.],1999.
    [15]CURRAN E T,MURTHY S N B.Scramjet propulision[M].Reston:AIAA,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700