用户名: 密码: 验证码:
虚拟试验中临近空间大气环境仿真技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Simulation of Near Space Atmospheric Environment in Virtual Test
  • 作者:许永辉 ; 成行 ; 程博 ; 孙丽
  • 英文作者:XU Yong-hui;CHENG Hang;CHENG Bo;SUN Li;Department of Automatic Test and Control, Harbin Institute of Technology;The 601 Institute of the Sixth Academy of China Aerospace Science and Industry Corporation;PHICOMM(Shanghai) Co.,Ltd.;
  • 关键词:虚拟试验 ; 临近空间 ; 大气环境 ; SEDRIS
  • 英文关键词:virtual test;;near space;;atmospheric environment;;SEDRIS
  • 中文刊名:IKJS
  • 英文刊名:Measurement & Control Technology
  • 机构:哈尔滨工业大学自动化测试与控制研究所;中国航天科工集团第六研究院六○一所;上海斐讯数据通信技术有限公司;
  • 出版日期:2019-02-18
  • 出版单位:测控技术
  • 年:2019
  • 期:v.38;No.324
  • 语种:中文;
  • 页:IKJS201902005
  • 页数:7
  • CN:02
  • ISSN:11-1764/TB
  • 分类号:17-22+27
摘要
临近空间作为空天过渡区域,对火箭等各种飞行器的安全和准确入轨有重大影响。为了完善临近空间的虚拟试验验证平台,提出一种基于美国TIMED卫星的SABER探测数据和参考大气模式的虚拟试验环境资源构建方法。该方法使用Matlab读取和预处理SABER探测数据,利用SABER探测数据的压强和密度参数计算大气风场,通过三维离散点插值算法构造符合分辨率要求的大气环境模型,根据SE D RIS规范格式化大气环境数据,生成临近空间虚拟环境资源。测试结果表明,该方法生成的临近空间虚拟大气环境资源能够为虚拟试验验证平台提供相应的环境支撑。
        As an aerospace transition area, near space has a significant impact on the safety and accuracy of various aircrafts such as rockets. In order to improve the virtual test verification platform in the environment resources, a method for constructing virtual experimental environment resources based on SABER detection data of the US TIMED satellite and reference atmospheric model is put forward. Matlab is used to read and preprocess SABER probe data, the atmospheric wind field with pressure and density parameters of SABER detection data is calculated, an atmospheric environment model that met resolution requirements is constructed through three-dimensional discrete point interpolation algorithm, and atmospheric data is formated according to the SEDRIS specification to generate near space virtual environment resources. The test results show that the virtual space environment resources generated by this method can provide corresponding environmental support for the virtual test verification platform.
引文
[1]闫芳.试验训练体系结构大气环境资源开发[D].哈尔滨:哈尔滨工业大学,2012:1-70.
    [2]孙磊,廉璞,常晓飞,等.临近空间大气环境建模及其对飞行器影响[J].指挥控制与仿真,2016(5):107-111.
    [3]吕达仁,陈泽宇,郭霞,等.临近空间大气环境研究现状[J].力学进展,2009(6):674-682.
    [4]景晓龙,张建伟,黄树彩.临近空间发展现状与关键技术研究[J].航天制造技术,2011(2):17-21.
    [5]孙丽.0-100km虚拟大气环境资源构建[D].哈尔滨:哈尔滨工业大学,2017.
    [6]林连雷,丁蔚.一种基于MM5和SEDRIS的虚拟大气环境构建方法[J].系统仿真学报,2015(5):1064-1070.
    [7]郭晶,李鑫,彭健,等.基于SEDRIS的虚拟试验合成环境建模技术研究[J].计算机测量与控制,2015(10):3455-3457.
    [8]肖存英.临近空间大气动力学特性研究[D].北京:中国科学院研究生院(空间科学与应用研究中心),2009.
    [9]肖存英,胡雄,杨钧烽,等.临近空间38°N大气密度特性及建模技术研究[J].北京航空航天大学学报,2017,43(9):1-12.
    [10]姚好海,蔡夕方,王睿,等.美国空间天气探测卫星——TIMED[J].科技传播,2012(21):102-104.
    [11] Rezac L,Jian Y,Yue J,et al. Bernath. Validation of the global distribution of CO_2 volume mixing ratio in the mesosphere and lower thermosphere from SABER[J]. Journal of Geophysical Research:Atmospheres,2015,120(23).
    [12] Gan Q,Du J,Fomichev V I,et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year(1979-2010)extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year(2002-2015)TIMED/SABER observations[J]. Journal of Geophysical Research:Space Physics,2017,122(4).
    [13] Horan B,Cox R. SEDRIS Past,Present,and Future Technically Speaking[C]//Proceeding of the Spring Simulation Interoperability Workshop. 1999.
    [14] Liu W H. Research on key technologies of synthetic natural environment[D]. Beijing:Beihang University,2004.
    [15]蔡军,许丽人,李鲲,等.建模与仿真中大气环境数据的表示与交换[J].装备环境工程,2010,7(2):61-80.
    [16]高伟,吴文凯,袁超.高斯投影坐标变换[J].钢铁技术,2008(1):4-8.
    [17]张雨霆,肖明,熊兆平.三维空间离散点数据场的插值方法[J].武汉大学学报(工学版),2008(4):34-37.
    [18]汪礼顺.多结点等参单元形态函数的确定[J].工程力学,1987(1):11-23.
    [19] Information technology-Synthetic Environment Data Representation and Interchange Specification(SEDRIS)-Part 1:Functional specification:ISO/IEC 18023-1[S].
    [20] Information technology-Computer graphics and image processing-SEDRIS-Part 2:Abstract transmittal format:ISO/IEC 18023-2[S].
    [21] Information technology-Computer graphics and image processing SEDRIS-Part 3:Transmittal format binary encoding:ISO/IEC 18023-3[S].
    [22] Information technology-SEDRIS language bindings-Part 4:C:ISO/IEC 18024-4[S].
    [23] Information technology-Computer graphics and image processing-Environmental Data Coding Specification(EDCS):ISO/IEC 18025[S].
    [24] Information technology-Spatial Reference Model(SRM):ISO/IEC 18026[S].
    [25] Information technology-Computer graphics, image processing and environmental data representation-EDCS language binding-Part4:C:ISO/IEC 18041-4[S].
    [26] Information technology-Computer graphics and image processing-Spatial Reference Model(SRM)language bindings-Part4:C:ISO/IEC 18042-4[S].
    [27] Mamaghani F. An introduction to SEDRIS:sharing&reuse of environmental data using SEDRIS standards[R/OL].[2010-03-06]. http://www. SEDRIS. org.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700