用户名: 密码: 验证码:
夹层式压电换能器开路电压影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence factors of open-circuit voltage on sandwich piezoelectric transducer
  • 作者:曹阳森 ; 沙爱民 ; 蔡若楠 ; 刘状壮
  • 英文作者:CAO Yang-sen;SHA Ai-min;CAI Ruo-nan;LIU Zhuang-zhuang;School of Highway,Chang'an University;Key Laboratory for Special Area Highway Engineering of Ministry of Education,Chang'an University;
  • 关键词:道路工程 ; 压电换能器 ; 荷载试验 ; 开路电压
  • 英文关键词:road engineering;;piezoelectric transducer;;loading test;;open-circuit voltage
  • 中文刊名:XAGL
  • 英文刊名:Journal of Chang'an University(Natural Science Edition)
  • 机构:长安大学公路学院;长安大学特殊地区公路工程教育部重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:长安大学学报(自然科学版)
  • 年:2019
  • 期:v.39;No.189
  • 基金:国家重点研发计划项目(2018YFB16006300)
  • 语种:中文;
  • 页:XAGL201901008
  • 页数:9
  • CN:01
  • ISSN:61-1393/N
  • 分类号:57-64+84
摘要
为探明压电换能器开路电压随各影响因素的变化规律,从而为提高压电路面能量收集效果提供理论依据,采用压电陶瓷晶片PZT-5H及聚氨酯基板制备了夹层式压电换能器。通过室内振动加载试验,研究压电换能器开路电压在不同荷载水平、荷载频率、压电陶瓷晶片并联数量下的变化规律。在此基础上,制备了小尺寸压电路面结构模型,并通过移动加载试验分析面层类型和面层温度对埋置在结构内部的压电换能器开路电压的影响。结果表明:开路电压与荷载水平和荷载频率正相关,但开路电压增长速度随荷载水平和荷载频率的提高逐渐变缓,荷载水平直接影响压电陶瓷晶片应力大小,当施加荷载为5kN,加载频率为4Hz时,压电换能器开路电压稳定在9.44V;开路电压随压电换能器中压电陶瓷晶片并联个数增加而减小,压电陶瓷晶片个数增加,单个压电陶瓷晶片承受荷载变小,当并联个数由1个增加到3个时,开路电压下降了26.6%;不同类型的沥青混合料力学性能不同,AC-13面层下开路电压较AC-10和OGFC-13大,AC-13面层与压电换能器匹配效果较好;温度不仅影响沥青混合料的结构性能还影响压电陶瓷晶片工作性能,温度升高,沥青混合料结构性能变差,压电陶瓷晶片工作性能降低,开路电压降低。
        In order to determine the variation rule of the open-circuit voltage of piezoelectric transducers with various influence factors,and to provide a theoretical basis for improving the effect of energy collection of piezoelectric pavement,sandwich piezoelectric transducers were fabricated by using PZT-5 Hpiezoelectric ceramic wafers and polyurethane boards.By means of laboratory vibration loading tests,the variation in the open-circuit voltage of piezoelectric transducers under different loads,load frequencies,and parallel number of piezoelectric ceramic wafers were studied.On this basis,small-size piezoelectric pavement structure models were prepared,and the influence of surface type and surface temperature on the open-circuit voltage of the piezoelectric transducer embedded in the structure was analyzed by the moving loading test.The results show that the open-circuit voltage is positively correlated with the load and loadfrequency,but the growth rate of the open-circuit voltage gradually decreases with an increase in the load and load frequency.The load directly affects the stress of the piezoelectric ceramic wafer.When the applied load is 5 kN and the loading frequency is 4 Hz,the open-circuit voltage of piezoelectric transducer is stable at 9.44 V.The open-circuit voltage decreases with an increase in the number of parallel piezoelectric ceramic wafers in the piezoelectric transducer.The number of piezoelectric ceramic wafers increases,and the load of a single piezoelectric ceramic wafer decreases.When the number increases from 1 to 3,the open-circuit voltage drops by 26.6%.Different types of asphalt mixtures have different mechanical properties.The open-circuit voltage under the AC-13 surface layer is higher than that under the AC-10 and OGFC-13 surface layer,and the matching effect between the AC-13 surface layer and the piezoelectric transducer is better.Temperature affects not only the structure performance of the asphalt mixture but also the performance of the piezoelectric ceramic wafer. With an increase in temperature,the structural performance of the asphalt mixture worsens,the working performance of the piezoelectric ceramic wafer decreases,and the open-circuit voltage decreases.2 tabs,9 figs,22 refs.
引文
[1]ANTON S R,SODANO H A.A review of power harvesting using piezoelectric materials(2003to 2006)[J].Smart Materials&Structures,2007,16(3):1-21.
    [2]WANG H,JASIM A,CHEN X.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review[J].Applied Energy,2018,212:1083-1094.
    [3]GUO L,LU Q.Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements[J].Renewable&Sustainable Energy Reviews,2017,72:761-773.
    [4]DUARTE F,FERREIRA A.Energy harvesting on road pavements:State of the art[J].Proceedings of the Institution of Civil Engineers,2016,169:79-90.
    [5]ZHAO H,LING J,YU J.A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement[J].Journal of the Ceramic Society of Japan,2012,120(1404):317-323.
    [6]张传忠.压电材料的发展及应用[J].压电与声光,1993,15(3):64-70.ZHANG Chuan-zhong.Development of piezoelectric materials and their applications[J].Piezoelectrics&Acoustooptics,1993,15(3):64-70.
    [7]谭忆秋,钟勇,吕建福,等.路面用PZT/沥青压电复合材料的制备及性能[J].建筑材料学报,2013,16(6):975-980.TAN Yi-qiu,ZHONG Yong,LU Jian-fu,et al.Preparation and properties of PZT/asphalt-based piezoelectric composites used on pavement[J].Journal of Building Materials,2013,16(6):975-980.
    [8]黄如宝,牛衍亮,赵鸿铎,等.道路压电能量收集技术途径与研究展望[J].中国公路学报,2012,25(6):1-8.HUANG Ru-bao,NIU Yan-liang,ZHAO Hong-duo,et al.Technical approach and research prospect of piezoelectric energy harvest from highway[J].China Journal of Highway and Transport,2012,25(6):1-8.
    [9]ZHAO H,YU J,LING J.Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement[J].Journal of the Ceramic Society of Japan,2010,118(1382):909-915.
    [10]PAPAGIANNAKIS A T,MONTOYA A,DESSOUKYS,et al.Development and evaluation of piezoelectric prototypes for roadway energy harvesting[J].Journal of Energy Engineering,2017,143(5):04017034.
    [11]SONG Y,YANG C H,HONG S K,et al.Road energy harvester designed as a macro-power source using the piezoelectric effect[J].International Journal of Hydrogen Energy,2016,41(29):12563-12568.
    [12]王朝辉,陈森,李彦伟,等.智能发电路面压电换能器保护措施设计及能量输出[J].中国公路学报,2016,29(5):41-49.WANG Chao-hui,CHEN Sen,LI Yan-wei,et al.Design of piezoelectric elements'protection measures and energy output of intelligent power pavement[J].China Journal of Highway and Transport,2016,29(5):41-49.
    [13]TAO J,HU J.Energy harvesting from pavement via polyvinylidene fluoride:Hybrid piezo-pyroelectric effects[J].Journal of Zhejiang University:Science A,2016,17(7):502-511.
    [14]CHEN Y,ZHANG H,ZHANG Y,et al.Mechanical energy harvesting from road pavements under vehicular load using embedded piezoelectric elements[J].Journal of Applied Mechanics,2016,83(8):081001.
    [15]DING G,ZHAO X,SUN F,et al.Effect of subgrade on piezoelectric energy harvesting under traffic loads[J].International Journal of Pavement Engineering,2018,19(8):661-674.
    [16]GUO L,LU Q.Modeling a new energy harvesting pavement system with experimental verification[J].Applied Energy,2017,208:1071-1082.
    [17]宋道仁,肖鸣山.压电效应及其应用[M].北京:科学普及出版社,1987.SONG Dao-ren,XIAO Ming-shan.Piezoelectric effect and its applications[M].Beijing:Popular Science Press,1987.
    [18]XIONG H,WANG L,WANG D,et al.Piezoelectric energy harvesting from traffic induced deformation of pavements[J].International Journal of Pavement Research&Technology,2012,5(5):333-337.
    [19]XIONG H,WANG L.Piezoelectric energy harvester for public roadway:On-site installation and evaluation[J].Applied Energy,2016,174:101-107.
    [20]PRIYA S,INMAN D J.Energy harvesting technologies[M].New York:Springer,2009.
    [21]PRIYA S.Criterion for material selection in design of bulk piezoelectric energy harvesters[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(12):2610-2612.
    [22]牛衍亮.压电式能量收集道路技术途径及其长期经济性研究[M].北京:科学出版社,2014.NIU Yan-liang.Research on technical approach and long-term economy of piezoelectric energy collection road[M].Beijing:Science Press,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700