用户名: 密码: 验证码:
一种新型磁流体加速度传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Magnetic Fluid Inertial Sensor
  • 作者:张西宁 ; 夏心锐 ; 向宙 ; 张雯雯
  • 英文作者:ZHANG Xining;XIA Xinrui;XIANG Zhou;ZHANG Wenwen;State Key Laboratory for Manufacturing Systems Engineering,Xi'an Jiaotong University;
  • 关键词:加速度传感器 ; 磁流体 ; 霍尔元件 ; 永磁铁
  • 英文关键词:inertial sensor;;magnetic fluid;;Hall sensor;;permanent magnet
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:西安交通大学机械制造系统工程国家重点实验室;
  • 出版日期:2018-11-02 14:39
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51275379);国家自然科学基金创新研究群体资助项目(51421004)
  • 语种:中文;
  • 页:XAJT201902001
  • 页数:9
  • CN:02
  • ISSN:61-1069/T
  • 分类号:7-14+85
摘要
为了解决传统磁流体加速度传感器体积大、灵敏度低、线性度差、使用频率范围低等缺点,设计了一种新型磁流体加速度传感器。采用圆柱形永磁铁作为惯性质量,将加速度转化为磁场的变化,利用高灵敏度线性霍尔检测磁场变化,从而实现加速度到电信号的转变。通过仿真和实验分别对磁流体的悬浮效应、阻尼效应以及圆柱形永磁铁的磁场分布情况进行了研究,结果表明:在永磁铁体积较小的情况下,永磁铁受到的悬浮力很小;在磁场作用下,磁流体具有非常优越的阻尼性能。基于永磁铁的磁场分布情况的研究结果,选取磁场变化梯度最大且线性度最好的位置安装霍尔元件,从而提高传感器灵敏度。利用振动实验台,对所设计的传感器性能进行实验验证,结果表明,新型磁流体加速度传感器具有较好的线性度和较大的可用频率范围,在其他结构不变的前提下,磁流体的使用将加速度传感器的可用频率范围提高了256%。本文为研究磁流体的悬浮效应和阻尼效应提供了一种策略,也为加速度传感器的研究和改进提供了一种新的思路。
        To solve the shortcomings of the traditional magnetic fluid inertial sensors,such as large volume,small sensitivity,low linearity and narrow available frequency domain,a novel magnetic fluid inertial sensor is designed.A cylindrical permanent magnet serves as the inertial mass to transform the acceleration value into the change of the magnetic field.Linear Hall sensor with high sensitivity is used to detect the change of the magnetic field,thus the acceleration is transferred to the electrical signal.By simulation and experiment,the suspension effect,damping effect of magnetic fluid and the distribution of the magnetic field of a cylindrical permanent magnet are investigated.It is verified that the suspension force is slight in the case that permanent magnet volume is small and the magnetic fluid has excellent damping effect under the action of magnetic field.The position of the maximum gradient and the best linearity of the magnetic field are found to install the Hall sensor.The experiments show that the novel magnetic fluid accelerometer has better linearity and wider available frequency range.The added magnetic fluid widens the frequency range of the acceleration sensor by 256%.
引文
[1] AKYILDIZ I F,SU W,SANKARASUBRAMANIAM Y,et al.A survey on sensor networks[J].IEEE Communications Magazine,2002,40(8):102-114.
    [2] BARSHAN B,DURRANTWHYTE H F.Inertial navigation systems for mobile robots[J].IEEE Trans on Robotics and Automation,1995,11(3):328-342.
    [3] BARBOUR N,SCHMIDT G.Inertial sensor technology trends[J].IEEE Sensors Journal,2001,1(4):332-339.
    [4] ZAHN M.Magnetic fluid and nanoparticle applications to nanotechnology[J].Journal of Nanoparticle Research,2001,3(1):73-78.
    [5]张西宁,尤亚男,王奔.一种利用磁流体液流变效应的在线动平衡方法[J].西安交通大学学报,2016,50(12):6-11.ZHANG Xining,YOU Yanan,WANG Ben.An online dynamic balancing method with magnetic fluid magneto-rheological effect[J].Journal of Xi’an Jiaotong University,2016,50(12):6-11.
    [6]张西宁,张海星,吴婷婷.一种转动容器中磁流体液表面形貌测量方法[J].西安交通大学学报,2017,51(1):103-108.ZHANG Xining,ZHANG Haixin, WU Tingting.Surface topography measurement of magnetic fluid in revolving contaiers[J].Journal of Xi’an Jiaotong University,2017,51(1):103-108.
    [7] BAGLIO S,BARRERA P,SAVALLI N.Novel ferrofluidic inertial sensors[C]∥Instrumentation and Measurement Technology Conference. Piscataway,NJ,USA:IEEE,2007:2368-2372.
    [8] PISO M I.Applications of magnetic fluids for inertial sensors[J].Journal of Magnetism&Magnetic Materials,1999,201(1/2/3):380-384.
    [9]杨文荣,杨庆新,孙景峰,等.磁流体加速度传感器的研究与设计[J].仪表技术与传感器,2006,42(8):3-4.YANG Wenrong,YANG Qingxin,SUN Jingfeng,et al.Study and design on acceleration sensor with magnetic fluid[J].Instrument Technique and Sensor,2006,42(8):3-4.
    [10]QIAN L,LI D,ZHU T.Use of magnetic fluid in accelerometers[J].Journal of Sensors,2014,2014(3):112-120.
    [11]QIAN L,LI D,YU J.The theoretical and experimental study of a novel two-dimensional magnetic fluid accelerometer[J].IEEE Sensors Journal,2016,16(23):8412-8419.
    [12]ROSENSWEIG R E.Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid[J].Nature,1966,210(5036):613-614.
    [13]ROSENSWEIG R E.Fluidmagnetic buoyancy[J].AIAA Journal,1966,4(10):1751-1758.
    [14]PETRESCU C,OLARU R.Performance analysis of ferrofluid actuators with permanent magnets of variable magnetization pattern[C]∥International Symposium on Advanced Topics in Electrical Engineering.Piscataway,NJ,USA:IEEE,2015:374-379.
    [15]HUANG C,YAO J,ZHANG T,et al.Damping applications of ferrofluids[J].Journal of Magnetics,2017,22(5):103-112.
    [16]ODENBACH S.Colloidal magnetic fluids:basics,development and application of ferrofluids[M].Berlin,Germany:Springer,2009:123-132.
    [17]PINHO M,BROUARD B,GNEVAUX J M,et al.Investigation into ferrofluid magnetoviscous effects under an oscillating shear flow[J].Journal of Magnetism&Magnetic Materials,2011,323(18/19):2386-2390.
    [18]LIU J.Analysis of a porous elastic sheet damper with a magnetic fluid[J].Journal of Tribology,2009,131(2):1230-1242.
    [19]钱乐平.磁性液体加速度传感器的理论及实验研究[D].北京:北京交通大学,2017:18-20.
    [20]胡玉勇,吕明,王时英,等.关于敲击法测量材料固有频率及弹性模量的研究[J].机械工程与自动化,2010(5):88-89,94.HU Yuyong,LMing,WANG Shiying,et al.Measurement of material natural frequency and elastic modulus by knocking method[J].Mechanical Engineering&Automation,2010(5):88-89,94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700