用户名: 密码: 验证码:
基于ANSYS Workbench的轴套表面裂纹应力强度系数有限元分析研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element analysis of stress intensity factor of surface crack in shaft sleeve based on ANSYS Workbench
  • 作者:魏维 ; 郭文勇 ; 沈惠杰 ; 吴新跃
  • 英文作者:WEI Wei;GUO Wen-yong;SHEN Hui-jie;WU Xin-yue;College of Power Engineering,Naval Univ.of Engineering;
  • 关键词:轴套 ; 表面裂纹 ; ANSYS ; Workbench ; 应力强度系数
  • 英文关键词:shaft sleeve;;surface crack;;ANSYS Workbench;;stress intensity factor
  • 中文刊名:HJGX
  • 英文刊名:Journal of Naval University of Engineering
  • 机构:海军工程大学动力工程学院;
  • 出版日期:2019-02-15
  • 出版单位:海军工程大学学报
  • 年:2019
  • 期:v.31;No.204
  • 基金:国家自然科学基金资助项目(51705529);; 国家部委基金资助项目(3020401040102)
  • 语种:中文;
  • 页:HJGX201901008
  • 页数:5
  • CN:01
  • ISSN:42-1106/E
  • 分类号:40-44
摘要
针对轴套表面裂纹受力复杂、不易进行理论计算的问题,开展了基于ANSYS Workbench的裂纹有限元仿真方法的研究,得到了轴套表面裂纹应力分布与裂纹尺寸和过盈偏差的关系,以及应力强度系数沿裂纹前缘位置的分布规律。通过对比发现,轴套表面裂纹的仿真结果与理论计算误差<10%,由此说明了有限元方法的有效性。
        In view of the complexity of the crack on sleeve surface,it is difficult to carry out theoretical calculation,and thus the finite element simulation method of crack based on ANSYS Workbench is carried out whereby the relationship between sleeve surface crack stress distribution and crack size and the amount of interference is obtained,the distribution of the stress intensity factor along the crack front position is calculated.The results show that the error rate between calculation and simulation of crack on shaft sleeve is less than10%,and the simulation is capable of showing the stress distribution,which means that the method is intuitive and effective,and proves superior to the theoretical calculation.
引文
[1]张广阔,高爱红,张小峰,等.低速重载类销轴和轴套的设计[J].煤矿机械,2012,33(3):21-22.ZHANG Guang-kuo,GAO Ai-hong,ZHANG Xiaofeng,et al. Design principles of pin rolls and bushings used in low-speed heavy-duty machines[J].Coal Mine Machinery,2012,33(3):21-22.(in Chinese)
    [2]滕淑珍,张子园,姚明奇,等.大型机械中冷缩装配轴套的设计[J].煤矿机械,2015,36(12):16-19.TENG Shu-zhen,ZHANG Zi-yuan,YAO Ming-qi,et al. Design of shaft sleeve with cold assembly method of heavy machinery[J]. Coal Mine Machinery,2015,36(12):16-19.(in Chinese)
    [3] LIN X B,SMITTH R A. Finite element modelling of fatigue crack growth of surface cracked plate[J].Engineering Fracture Mechanics,1999,63:503-522.
    [4] KMAYS M,NISHIOKA T. Analysis of surface crack in cylinder by finite element alternating method[J].Journal of Pressure Vessel Technology,2005,127(2):72-165.
    [5] STANIALAV P,TREVOR K H. Numerical for determining stress intensity factors vs crack depth in gear tooth roots[J]. International Journal of Fatigue,1997,19(10):677-685.
    [6]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [7]李成彬.抽油杆表面裂纹仿真分析及剩余寿命预测[D].荆州:长江大学,2015.
    [8] CHANG E,DOVER W D. Weight function and stress intensity factor for a semi-elliptical surface saddle crack in a tubular welded joint[J]. Strain Analysis,2005,40(4):301-326.
    [9]王自强,陈少华.高等断裂力学[M].北京,科学出版社,2009.
    [10]曹彩芹,王超,李诚诚.含裂纹的梭型薄壁圆柱壳结构应力强度因子分析研究[J].西安建筑科技大学学报,2016,48(5):691-695.CAO Cai-qin,WANG Chao,LI Cheng-cheng. Study on stress intensity factors of thin-walled shuttle cylinder structure with cracks[J]. J. Xi'an Univ. of Arch.&Tech.,2016,48(5):691-695.(in Chinese)
    [11]陈银强.圆柱表面椭圆裂纹应力强度因子的有限元分析和研究[D].武汉:武汉工程大学,2006.
    [12] NEWMAN J C,RAJU I S. An empirical stress intensity factor equation for the surface crack[J]. Engg.Fracture Mech.,1976,15(1):185-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700