用户名: 密码: 验证码:
黔南坳陷下石炭统台间黑色岩系有机质富集特征及控制因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and controlling factors of organic matter enrichment of Lower Carboniferous black rock series deposited in inter-platform region,Southern Guizhou Depression
  • 作者:丁江辉 ; 张金川 ; 李兴起 ; 郎岳 ; 郑玉岩 ; 许龙飞
  • 英文作者:DING Jianghui;ZHANG Jinchuan;LI Xingqi;LANG Yue;ZHENG Yuyan;XU Longfei;School of Energy and Resources,China University of Geosciences;Key Laboratory of Strategy Evaluation for Shale Gas,Ministry of Land and Resources;Key Laboratory of Tectonics and Petroleum Resources,Ministry of Education,China University of Geosciences;
  • 关键词:有机质 ; 氧化-还原条件 ; 古生产力 ; 大塘组 ; 台间区域 ; 黔南坳陷
  • 英文关键词:organic matter;;redox conditions;;paleoproductivity;;Datang Formation;;inter-platform region;;Southern Guizhou Depression
  • 中文刊名:YANX
  • 英文刊名:Lithologic Reservoirs
  • 机构:中国地质大学(北京)能源学院;国土资源部页岩气资源战略评价重点实验室;中国地质大学构造与油气资源教育部重点实验室;
  • 出版日期:2019-01-09 11:19
  • 出版单位:岩性油气藏
  • 年:2019
  • 期:v.31
  • 基金:国家重大科技专项“页岩气分类分级资源评价方法研究”(编号:2016ZX05034-002-001);; “构造与油气资源”教育部重点实验室开放研究基金课题“基于龟裂实验的页岩成岩收缩缝形成机理及应用”(编号:TPR-2018-09);; 优秀导师基金项目“页岩层内结核发育特征及其油气地质意义”(编号:2-9-2017-315)联合资助
  • 语种:中文;
  • 页:YANX201902010
  • 页数:13
  • CN:02
  • ISSN:62-1195/TE
  • 分类号:86-98
摘要
黔南坳陷下石炭统台间黑色岩系中有机质较为发育,为研究其富集特征及控制因素,以黔南安顺市镇宁县本寨乡露头剖面为研究对象,开展了总有机碳含量(TOC)测试、氩离子抛光-扫面电镜分析、主微量元素分析等工作。结果表明:①黔南坳陷下石炭统大塘组黑色岩系样品的TOC质量分数为0.90%~2.83%,平均为1.45%,且TOC变化与地层旋回具有很好的相关性。②U,V和Mo等微量元素含量相对较低,氧化-还原敏感指标U/Th,V/Cr,Ni/Co及EF_U-EF_(Mo)协变模式,黄铁矿粒径均超过5μm,三大证据均反映黔南坳陷早石炭世黑色岩系沉积时期水体处于氧化—次氧化环境,这种水体的富氧状态不利于有机质的保存,但台间水体相对较浅,部分生物快速埋藏来不及被氧化或降解,也可形成有机质的富集。③U/Th,V/Cr和Ni/Co与TOC没有明显的相关性,而古生产力指标Mo含量与TOC含量呈现明显的正相关性,表明台间黑色岩系有机质的富集主要受古生产力控制,且陆源碎屑的输入对有机质含量具有一定的稀释作用。④早石炭世研究区区域性海平面的上升带来了丰富的营养物质,使得水体中的生物更加繁盛,提高了生产力。该研究成果对于海陆过渡相煤系、中小型含煤盆地中的有机质富集规律和页岩气成藏条件研究均具有一定的参考价值。
        Organic matter is well developed in the Lower Carboniferous black rock series deposited in an interplatform region,Southern Guizhou Depression. In order to clarify the characteristics and controlling factors of organic matter enrichment in such a setting,a case study was carried out from a newly-cut roadside outcrop,by conducting total organic carbon(TOC)test,argon ion polishing-scanning electron microscopy(SEM)analysis,major and trace element tests. The results show that:(1)TOC contents of the investigated samples of Datang Formation in Southern Guizhou Depression range from 0.90% to 2.83%,with an average of 1.45%,displaying cyclic fluctuations being in accordance with the stratigraphic cycle.(2)Both the relatively low U,V and Mo concentrations and framboidal pyrite diameter mostly more than 5 μm,together with EF_U-EF_(Mo)covariations and multiple redox-sensitive indicators such as U/Th,V/Cr and Ni/Co,indicate an oxic and/or dysoxic water environment in Southern Guizhou Depression during the Early Carboniferous period,which is usually considered unfavorable for organic matter accumulation and preservation. Because the water depth in the inter-platform region is relatively shallow,some organisms cannot be oxidized or degraded through rapid burial,further promoting organic matter enrichment.(3)There is no obvious correlation between TOC and U/Th,V/Cr and Ni/Co. Of the aspects that might affect organic matter enrichment,including redox conditions,paleoproductivity,and terrigenous clastic input,the paleoproductivity seems to be the dominant controlling factor. This is strongly supported by the positive correlation between Mo and TOC contents. Also,terrigenous clastic inputs have a certain dilution effect on the organic matter content.(4)The organic matter enrichment in Southern Guizhou Depression arose dominantly from increased organic carbon export with enhanced nutrient fluxes owning to the regional sea level rising during the Early Carboniferous period. The research results would provide guidance for the study of organic matter enrichment patterns and shale gas accumulation conditions in the marine-continental transitional coal-bearing strata and medium and small-sized coal-bearing basins.
引文
[1]张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力.天然气工业,2008,28(6):136-140.ZHANG J C,XU B NIE H K,et al. Exploration potential of shale gas resources in China. Natural Gas Industry,2008,28(6):136-140.
    [2]邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发,2010,37(6):641-653.ZOU C N,DONG D Z,WANG S J,et al. Geological characteristics,formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development,2010,37(6):641-653.
    [3]董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景.石油学报,2012,33(增刊1):107-114.DONG D Z,ZOU C N,YANG H,et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica,2012,33(Suppl 1):107-114.
    [4]金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素.地学前缘,2016,23(1):1-10.JIN Z J,HU Z Q,GAO B,et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin. Earth Science Frontiers,2016,23(1):1-10.
    [5]张金川,霍志鹏,唐玄,等.中国页岩气地质.上海:华东理工大学出版社,2016:26-27.ZHANG J C,HUO Z P,TANG X,et al. Shale gas geology in China. Shanghai:East China University of Science and Technology Press,2016:26-27.
    [6]孟凡洋,陈科,包书景,等.湘西北复杂构造区下寒武统页岩含气性及主控因素分析:以慈页1井为例.岩性油气藏,2018,30(5):29-39.MENG F Y,CHEN K,BAO S J,et al. Gas-bearing property and main controlling factors of Lower Cambrian shale in complex tectonic area of northwestern Hunan province:a case of well Ciye 1. Lithologic Reservoirs,2018,30(5):29-39.
    [7] TYSON R V,PEARSON T H. Modern and ancient continental shelf anoxia:an overview. Arctic&Alpine Research,1991,58(1):1-24.
    [8] PEDERSEN T F,CALVERT S E. Anoxia vs. productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin,1990,74:454-466.
    [9] SAGEMAN B B,MURPHY A E,WERNE J P,et al. A tale of shales:the relative roles of production,decomposition,and dilution in the accumulation of organic-rich strata,Middle-Upper Devonian,Appalachian Basin. Chemical Geology,2003,195(1):229-273.
    [10] GALLEGO-TORRES D,MARTINEZ-RUIZ F,PAYTAN A,et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean:Role of anoxia vs. productivity at time of sapropel deposition. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,246(2):424-439.
    [11] ARTHUR M A,SAGEMAN B B. Marine black shales:depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences,1994,22:499-551.
    [12] MORT H,JACQUAT O,ADATTE T,et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain:Enhanced productivity and/or better preservation? Cretaceous Research,2007,28(4):597-612.
    [13]苏慧敏,杨瑞东,程伟,等.贵州西南部下石炭统打屋坝组页岩气成藏特征与有利区分析.贵州大学学报(自然版),2017,34(3):41-46.SU H M,YANG R D,CHENG W,et al. Shale gas accumulation characteristics and advantageous area analysis of Lower Carboniferous Dawuba Formation in southwestern Guizhou.Journal of Guizhou University(Natural Sciences),2017,34(3):41-46.
    [14]梅冥相,马永生,邓军,等.滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比.中国地质,2005,32(1):13-24.MEI M X,MA Y S,DENG J,et al. Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China,2005,32(1):13-24.
    [15] CHEN D,TUCKER M E. The Frasnian-Famennian mass extinction:Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography,Palaeoclimatology,Palaeoecology,2003,193(1):87-111.
    [16]闫建平,言语,彭军,等.天文地层学与旋回地层学的关系、研究进展及其意义.岩性油气藏,2017,29(1):147-156.YAN J P,YAN Y,PENG J,et al. The research progress,significance and relationship of astrostratigraphy with cyclostratigraphy. Lithologic Reservoirs,2017,29(1):147-156.
    [17] PI D H,LIU C Q,SHIELDS-ZHOU G A,et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province,South China:Constraints for redox environments and origin of metal enrichments. Precambrian Research,2013,225(1):218-229.
    [18] TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:an update.Chemical Geology,2006,232(1/2):12-32.
    [19] WEDEPOHL K H. Environmental influences on the chemical composition of shales and clays. Physics&Chemistry of the Earth,1971,8(71):305-333.
    [20] TAYLOR S R,MCLENNAN S M. The continental crust:Its composition and evolution. London:Blackwell Scientific Publications,1985:312.
    [21] CAO J,YANG R,YIN W,et al. Mechanism of organic matter accumulation in residual bay environments:the Early Cretaceous Qiangtang Basin,Tibet. Energy&Fuels,2018,32(2):1024-1037.
    [22] SPEARS D A,ZHENG Y. Geochemistry and origin of elements in some UK coals. International Journal of Coal Geology,1999,38(3-4):161-179.
    [23] FU X G,WANG J,ZENG Y H,et al. Geochemistry and origin of rare earth elements(REEs)in the Shengli River oil shale,northern Tibet,China. Chemie der Erde-Geochemistry,2011,71(1):21-30.
    [24] WANG Z,FU X,FENG X,et al. Geochemical features of the black shales from the Wuyu Basin,Southern Tibet:Implications for palaeoenvironment and palaeoclimate. Geological Journal,2017,52(2):282-297.
    [25] LYONS T W,WERNE J P,HOLLANDER D J,et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin,Venezuela.Chemical Geology,2003,195(1/4):131-157.
    [26] ROSS D J K,BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata:Examples from the DevonianMississippian shales,Western Canadian Sedimentary Basin.Chemical Geology,2009,260(1/2):1-19.
    [27] MORFORD J L,EMERSON S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta,1999,63:1735-1750.
    [28] CALVERT S E,PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record. Marine Geology,1993,113(1/2):67-88.
    [29] HATCH J R,LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark shale member of the Dennis limestone,Wabaunsee county,Kansas,U. S. A.Chemical Geology,1992,99(1/3):65-82.
    [30] JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology,1994,111(111):111-129.
    [31]李兴,张立强,施辉,等.准噶尔盆地玛湖凹陷百口泉组沉积古环境分析:以玛18井为例.岩性油气藏,2016,28(2):80-85.LI X,ZHANG L Q,SHI H,et al. Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag,Junggar Basin:a case study from Ma 18 well. Lithologic Reservoirs,2016,28(2):80-85.
    [32]黄成刚,常海燕,崔俊,等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式.石油学报,2017,38(11):1230-1243.HUANG C G,CHANG H Y,CUI J,et al. Sedimentary characteristics and hydrocarbon accumulation model of Oligocene reservoirs in the western Qaidam Basin. Acta Petrolei Sinica,2017,38(11):1230-1243.
    [33]韦恒叶.古海洋生产力与氧化-还原指标:元素地球化学综述.沉积与特提斯地质,2012,32(2):76-88.WEI H Y. Productivity and redox proxies of palaeo-oceans:an overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology,2012,32(2):76-88.
    [34] ALGEO T J,TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology,2009,268(3-4):211-225.
    [35]徐祖新,韩淑敏,王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏,2015,27(2):31-37.XU Z X,HAN S M,WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in Middle Yangtze area. Lithologic Reservoirs,2015,27(2):31-37.
    [36] WILKIN R T,BARNES H L. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta,1997,61(2):323-339.
    [37] WEI H,CHEN D,WANG J,et al. Organic accumulation in the lower Chihsia Formation(Middle Permian)of South China:Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeography,Palaeoclimatology,Palaeoecology,2013,353-355(3):73-86.
    [38]杨瑞东,颜承锡,汪成元,等.贵州石炭纪遗迹化石:兼论Zoophycos在地史时期的古地理分布.贵州地质,1995,12(4):290-297.YANG R D,YAN C X,WANG C Y,et al. The Carboniferous trace fossils in Guizhou:Discussion on distribution of Zoophycos throughout geological history. Guizhou Geology,1995,12(4):290-297.
    [39] DYMOND J,SUESS E,LYLE M. Barium in deep-sea sediment:a geochemical proxy for paleoproductivity. Paleoceanography,1992,7(2):163-181.
    [40] FRANCOIS R,HONJO S,MANGANINI S J,et al. Biogenic barium fluxes to the deep sea:Implications for paleoproductivity reconstruction. Global Biogeochemical Cycles,1995,9(2):289-303.
    [41] YAN D,WANG H,FU Q,et al. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of South China:Implications for organic matter accumulation. Marine and Petroleum Geology,2015,65:290-301.
    [42] ALGEO T J,LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments:implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography,2006,21(1):PA1016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700