用户名: 密码: 验证码:
宽带光声光谱技术在甲烷浓度探测中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Broadband Photoacoustic Spectroscopy in Methane Concentration Detection
  • 作者:查申龙 ; 马宏亮 ; 查长礼 ; 陈家金 ; 黄星 ; 刘锟 ; 占生宝
  • 英文作者:Zha Shenlong;Ma Hongliang;Zha Changli;Chen Jiajin;Huang Xing;Liu Kun;Zhan Shengbao;School of Physics and Electronic Engineering,Anqing Normal University;Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;
  • 关键词:光谱学 ; 浓度探测 ; 光声光谱 ; 甲烷 ; 长程吸收池
  • 英文关键词:spectroscopy;;concentration detection;;photoacoustic spectroscopy;;methane;;long path absorption cell
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:安庆师范大学物理与电气工程学院;中国科学院安徽光学精密机械研究所;
  • 出版日期:2018-09-07 11:00
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.639
  • 基金:国家自然科学基金(41475023);; 安徽省自然科学基金(1808085MF189)
  • 语种:中文;
  • 页:JGDJ201904030
  • 页数:5
  • CN:04
  • ISSN:31-1690/TN
  • 分类号:248-252
摘要
利用宽带光源设计了用于探测甲烷浓度的光声光谱系统,在22Hz最佳调制频率下对甲烷浓度进行了探测,利用Allan方差分析了系统的稳定性,评估了系统的最低探测浓度。研究结果表明,系统对甲烷浓度(体积比)的探测极限能达到1×10-6。利用宽带光声光谱系统及基于分布反馈式二极管激光光源和长光程吸收池的直接吸收光谱探测系统同时对甲烷浓度进行探测,得到宽带光声光谱系统对甲烷浓度探测的误差约为8%。
        A photoacoustic spectroscopy detection system based on a broadband light source is introduced,and the methane concentration is detected at the optimum modulation frequency of 22 Hz;further,the stability and the minimum detection concentration of the system are analyzed with Allan variance.The research results exhibit that the concentration(volume ratio)detection limit of methane can exceed 1 × 10-6.The methane concentration is detected by broadband photoacoustic system and direct absorption detection system based on distributed feedback diode laser source with a long path absorption cell simultaneously.The detected results show that the error of methane concentration detection by the broadband photoacoustic system is about 8%.
引文
[1]Xia H,Liu W Q,Zhang Y J,et al.On-line monitoring and analysis of long open-path methane based on laser absorption spectroscopy[J].Acta Optica Sinica,2009,29(6):1454-1458.夏慧,刘文清,张玉钧,等.基于激光吸收光谱开放式长光程的空气中甲烷在线监测及分析[J].光学学报,2009,29(6):1454-1458.
    [2]Cheng S Y,Gao M G,Xu L,et al.Remote sensing of seasonal variation in column concentration of atmospheric CO2and CH4in Hefei[J].Spectroscopy and Spectral Analysis,2014,34(3):587-591.程巳阳,高闽光,徐亮,等.合肥地区大气中CO2和CH4柱浓度季节变化遥测[J].光谱学与光谱分析,2014,34(3):587-591.
    [3]Li Z Y,Tan R Q,Huang W,et al.Methane pressure detection based on Fourier transform infrared spectroscopy[J].Chinese Journal of Lasers,2017,44(3):0301006.李志永,谭荣清,黄伟,等.傅里叶变换红外光谱技术测量甲烷气压的实验研究[J].中国激光,2017,44(3):0301006.
    [4]Wu T,Xu D,He X D,et al.Off-axis integrated cavity output spectroscopy technique based on wavelength modulation[J].Acta Optica Sinica,2017,37(8):0830002.吴涛,徐冬,何兴道,等.基于波长调制的离轴积分腔输出光谱技术[J].光学学报,2017,37(8):0830002.
    [5]Zhang Z R,Xia H,Dong F Z,et al.Simultaneous and on-line detection of multiple gas concentration with tunable diode laser absorption spectroscopy[J].Optics and Precision Engineering,2013,21(11):2771-2777.张志荣,夏滑,董凤忠,等.利用可调谐半导体激光吸收光谱法同时在线监测多组分气体浓度[J].光学精密工程,2013,21(11):2771-2777.
    [6]Li L,Yang Y G,Chen W L,et al.Correction of influence conditions in TDLAS ammonia measuring based on hollow waveguide cell[J].Opto-Electronic Engineering,2015,42(12):35-40.李龙,杨燕罡,陈文亮,等.基于HWG气体池的TDLAS氨气测量中影响条件的修正[J].光电工程,2015,42(12):35-40.
    [7]Wang M M,Dai W G,Yang H N,et al.Leakage detection of vial based on tunable diode laser absorption spectroscopy[J].Laser&Optoelectronics Progress,2017,54(8):083004.王明明,戴伟国,杨荟楠,等.基于可调谐半导体激光吸收光谱技术的西林瓶检漏方法[J].激光与光电子学进展,2017,54(8):083004.
    [8]Kalkman J,van Kesteren H W.Relaxation effects and high sensitivity photoacoustic detection of NO2with a blue laser diode[J].Applied Physics B,2008,90(2):197-200.
    [9]Zhou Q,Tang C,Zhu S,et al.Detection of dissolved carbon monoxide in transformer oil using 1.567 m diode laser-based photoacoustic spectroscopy[J].Journal of Spectroscopy,2015(5):1-7.
    [10]Thaler K M,Berger C,Leix C,et al.Photoacoustic spectroscopy for the quantification of N2O in the offgas of wastewater treatment plants[J].Analytical Chemistry,2017,89(6):3795-3801.
    [11]Yun Y X,Chen W G,Sun C X,et al.Photoacoustic detection of methane dissolved in transformer oil[J].Proceedings of the CSEE,2008,28(34):40-46.云玉新,陈伟根,孙才新,等.变压器油中甲烷气体的光声光谱检测方法[J].中国电机工程学报,2008,28(34):40-46.
    [12]Kosterev A A,Bakhirkin Y A,Curl R F,et al.Quartz-enhanced photoacoustic spectroscopy[J].Optics Letters,2002,27(21):1902-1904.
    [13]Cumis M S,Viciani S,Borri S,et al.Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring[J].Optics Express,2014,22(23):28222-28231.
    [14]Tian L,Lin C,Xu Z W,et al.Research on the fiber Fabry-Perot demodulation technique based on alloptical quartz enhanced photoacoustic spectroscopy system[J].Laser&Optoelectronics Progress,2014,51(6):060602.田莉,林成,许祖稳,等.全光式石英增强光声光谱系统光纤法珀解调技术研究[J].激光与光电子学进展,2014,51(6):060602.
    [15]Zha S L.Transformer fault gas detection based on the broadband photo-acoustic spectroscopy[D].Hefei:University of Science and Technology of China,2017:18-38.查申龙.变压器故障气体宽带光声光谱技术研究[D].合肥:中国科学技术大学,2017:18-38.
    [16]Dong L,Wu H P,Zheng H D,et al.Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J].Optics Letters,2014,39(8):2479-2482.
    [17]Liu K,Guo X Y,Yi H M,et al.Off-beam quartzenhanced photoacoustic spectroscopy[J].Optics Letters,2009,34(10):1594-1596.
    [18]Miklós A.Acoustic aspects of photoacoustic signal generation and detection in gases[J].International Journal of Thermophysics,2015,36(9):2285-2317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700