用户名: 密码: 验证码:
二维过渡金属碳化物的结构、电磁特性及微波吸收性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure, electromagnetic properties and microwave absorption performance of two-dimensional transition metal carbides
  • 作者:蔡永珠 ; 何朋 ; 疏金成 ; 曹茂盛
  • 英文作者:CAI Yongzhu;HE Peng;SHU Jincheng;CAO Maosheng;School of Materials Science and Engineering, Beijing Institute of Technology;
  • 关键词:二维过渡金属碳化物 ; 电子结构 ; 电磁特性 ; 微波吸收
  • 英文关键词:transition metal carbides;;electronic structure;;electromagnetic properties;;microwave absorption
  • 中文刊名:HLDZ
  • 英文刊名:Journal of Natural Science of Heilongjiang University
  • 机构:北京理工大学材料学院;
  • 出版日期:2019-02-25
  • 出版单位:黑龙江大学自然科学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金资助项目(11774027;51372282;51132002)
  • 语种:中文;
  • 页:HLDZ201901008
  • 页数:14
  • CN:01
  • ISSN:23-1181/N
  • 分类号:51-64
摘要
二维(2D)过渡金属碳化物(MXenes)具有完美的层状结构、超高导电性和易调控的活性表面,这些优点使其在微波吸收和电磁屏蔽应用中表现出极大的吸引力。本文综述了2D MXene基材料的结构、电磁特性和微波吸收性能,并分析了目前该材料面临的主要问题和未来的发展趋势。
        Two-dimensional transition metal carbides(MXenes) has a perfect layered structure, ultra-high electrical conductivity and tunable surface groups. These advantages make it extremely attractive in microwave absorption and electromagnetic interference shielding fields. Herein, the structure, electromagnetic properties and microwave absorption performance of MXene-based materials are reviewed, and the major problems and bottlenecks and future development trends of this material are analyzed.
引文
[1] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353: 1137-1140.
    [2] HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band [J]. ACS Applied Materials & Interfaces, 2016, 8: 21011-21019.
    [3] CAO M S, WANG X X, CAO W Q, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion [J]. Small, 2018, 14: 1800987.
    [4] LV H L, YANG Z H, WANG P L, et al. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device [J]. Advanced Materials, 2018, 30: 1706343.
    [5] WAN Y J, ZHU P L, YU S H, et al. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding [J]. Small, 2018, 14: 1800534.
    [6] QIAN Y, WEI H W, DONG J D, et al. Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption [J]. Ceramics International, 2017, 43: 10757-10762.
    [7] SUN H, CHE R C, YOU X, et al. Crosss-tacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities [J]. Advanced Materials, 2014, 26: 8120-8125.
    [8] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites [J]. Carbon, 2013, 65: 124-139.
    [9] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption [J]. ACS Applied Materials & Interfaces, 2012, 4: 6949-6956.
    [10] WEN B, CAO M S, LU M M, et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures [J]. Advanced Materials, 2014, 26: 3484-3489.
    [11] ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam [J]. Advanced Materials, 2015, 27: 2049-2053.
    [12] CAO M S, WANG X X, CAO W Q, et al. Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2015, 3: 6589-6599.
    [13] CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves [J]. Journal of Materials Chemistry C, 2018, 6: 4586-4602.
    [14] WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth [J]. Chemical Engineering Journal, 2018, 332: 321-330.
    [15] CAO W Q, WANG X X, YUAN J, et al. Temperature dependent microwave absorption of ultrathin graphene composites [J]. Journal of Materials Chemistry C, 2015, 3: 10017-10022.
    [16] YAN D X, PANG H, LI B, et al. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding [J]. Advanced Functional Materials, 2015, 25: 559-566.
    [17] LV H L, GUO Y H, ZHAO Y, et al. Achieving tunable electromagnetic absorber via graphene/carbon sphere composites [J]. Carbon, 2016, 110: 130-137.
    [18] HU M, ZHANG N, SHAN G, et al. Two-dimensional materials: emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber [J]. Frontiers of Physics, 2018, 13: 138113.
    [19] NING M Q, LU M M, LI J B, et al. Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance [J]. Nanoscale, 2015, 7: 15734-15740.
    [20] LIU L L, ZHANG S, YAN F, et al. Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material [J]. ACS Applied Materials & Interfaces, 2018, 10: 14108-14115.
    [21] QUAN B, LIANG X H, XU G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation [J]. New Journal of Chemistry, 2017, 41: 1259-1266.
    [22] WU F, XIE A, SUN M X, et al. Few-layer black phosphorus: a bright future in electromagnetic absorption [J]. Materials Letters, 2017, 193: 30-33.
    [23] LV H L, ZHANG H Q, JI G B. Development of novel graphene/g-C3N4 composite with broad-frequency and light-weight features [J]. Particle & Particle Systems Characterization, 2016, 33: 656-663.
    [24] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23: 4248-4253.
    [25] QING Y C, ZHOU W C, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International, 2016, 42: 16412-16416.
    [26] RAKHI R B, AHMED B, ANJUM D, et al. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications [J]. ACS Applied Materials & Interfaces, 2016, 8: 18806-18814.
    [27] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides [J]. ACS Nano, 2012, 6: 1322-1331.
    [28] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2: 16098.
    [29] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials [J]. Advanced Materials, 2014, 26: 992-1005.
    [30] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516: 78-81.
    [31] CAO M S, CAI Y Z, HE P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding [J]. Chemical Engineering Journal, 2018, 359: 1265-1302.
    [32] LI M, HAN M K, ZHOU J, et al. Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption [J]. Advanced Electronic Materials, 2018, 4: 1700617.
    [33] LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding [J]. Advanced Materials, 2017, 29: 1702367.
    [34] MA Y, YUE Y, ZHANG H, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor [J]. ACS Nano, 2018, 12: 3209-3216.
    [35] PENG Q M, GUO J X, ZHANG Q R, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide [J]. Journal of the American Chemical Society, 2014, 136: 4113-4116.
    [36] HUANG K, LI Z, LIN J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications [J]. Chemical Society Reviews, 2018, 47: 5109-5124.
    [37] LI X L, YIN X W, HAN M K, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene [J]. Journal of Materials Chemistry C, 2017, 5: 7621-7628.
    [38] NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials by selective extraction [J]. Accounts of Chemical Research, 2015, 48: 128-135.
    [39] TANG Q, ZHOU Z, SHEN P W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer [J]. Journal of the American Chemical Society, 2012, 134: 16909-16916.
    [40] WANG X F, SHEN X, GAO Y R, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X [J]. Journal of the American Chemical Society, 2015, 137: 2715-2721.
    [41] TAO Q Z, DAHLQVIST M, LU J, et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering [J]. Nature Communications, 2017, 8: 14949.
    [42] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes) [J]. ACS Nano, 2015, 9: 9507-9516.
    [43] GAO G Y, DING G Q, LI J, et al. Monolayer MXenes: promising half-metals and spin gapless semiconductors [J]. Nanoscale, 2016, 8: 8986-8994.
    [44] MAGNE D, MAUCHAMP V, CéLéRIER S, et al. Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups [J]. Physical Chemistry Chemical Physics, 2016, 18: 30946-30953.
    [45] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes [J]. Advanced Electronic Materials, 2016, 2: 1600255.
    [46] XU B Z, ZHU M S, ZHANG W C, et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity [J]. Advanced Materials, 2016, 28: 3333-3339.
    [47] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chemistry of Materials, 2017, 29: 7633-7644.
    [48] DU F, TANG H, PAN L M, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries [J]. Electrochimca Acta, 2017, 235: 690-699.
    [49] YANG C H, TANG Y, TIAN Y P, et al. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors [J]. Advanced Functional Materials, 2018, 28: 1705487.
    [50] LI S, TUO P, XIE J F, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution [J]. Nano Energy, 2018, 47: 512-518.
    [51] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 16676-16681.
    [52] MARIANO M, MASHTALIR O, ANTONIO F Q, et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors [J]. Nanoscale, 2016, 8: 16371-16378.
    [53] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films [J]. Chemistry of Materials, 2014, 26: 2374-2381.
    [54] TU S B, JIANG Q, ZHANG X X, et al. Large dielectric constant enhancement in MXene percolative polymer composites [J]. ACS Nano, 2018, 12: 3369-3377.
    [55] TONG Y, HE M, ZHOU Y, et al. Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time [J]. Journal of Materials Science-Materials in Electronics, 2018, 29: 8078-8088.
    [56] QING Y C, NAN H Y, LUO F, et al. Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers [J]. RSC Advances, 2017, 7: 27755-27761.
    [57] LI Y B, ZHOU X B, WANG J, et al. Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance [J]. RSC Advances, 2017, 7: 24698-24708.
    [58] SHI X L, CAO M S, YUAN J, et al. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites [J]. Applied Physics Letters, 2008, 93(18): 183118.
    [59] XU G F, WANG X X, GONG S D, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption [J]. Nanotechnology, 2018, 29: 355201.
    [60] HAN M K, YIN X W, LI X L, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes [J]. ACS Applied Materials & Interfaces, 2017, 9: 20038-20045.
    [61] DAI B Z, ZHAO B, XIE X, et al. Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption [J]. Journal of Materials Chemistry C, 2018, 6: 5690-5697.
    [62] LI X L, YIN X W, HAN M K, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties [J]. Journal of Materials Chemistry C, 2017, 5: 4068-4074.
    [63] TONG Y, HE M, ZHOU Y M, et al. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption [J]. Applied Surface Science, 2018, 434: 283-293.
    [64] JIANG Y, XIE X, CHEN Y, et al. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties [J]. Journal of Materials Chemistry C, 2018, 6: 8679-8687.
    [65] LI X, YIN X, SONG C, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance [J]. Advanced Functional Materials, 2018, 28: 1803938.
    [66] LI X, YIN X, XU H, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band [J]. ACS Applied Materials & Interfaces, 2018, 10: 34524-34533.
    [67] LIU P J, NG V M H, YAO Z J, et al. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance [J]. Materials Letters, 2018, 229: 286-289.
    [68] YANG H B, DAI J J, LIU X, et al. Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range [J]. Materials Chemistry and Physics, 2017, 200: 179-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700