用户名: 密码: 验证码:
亚热带典型小流域景观格局对耕地土壤酸化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of Landscape Patterns on Farmland Soil Acidification in Typical Subtropical Small Watersheds of China
  • 作者:袁宇志 ; 郭颖 ; 张育灿 ; 张桥 ; 郑超 ; 孙慧 ; 柴敏 ; 郭治兴
  • 英文作者:YUAN Yuzhi;GUO Ying;ZHANG Yucan;ZHANG Qiao;ZHENG Chao;SUN Hui;CHAI Min;GUO Zhixing;Guangdong Institute of Eco-environmental Science & Technology, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management;Department of Agriculture and Rural Affairs of Guangdong Province;College of Resources and Environment, Shanxi Agriculture University;Institute of Earth Environment, Chinese Academy of Sciences;
  • 关键词:景观格局 ; 土壤酸化 ; 耕地 ; 流溪河流域
  • 英文关键词:Landscape pattern;;Soil acidification;;Farmlands;;Liuxihe watershed
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:广东省生态环境技术研究所广东省农业环境综合治理重点实验室;广东省农业农村厅;山西农业大学资源环境学院;中国科学院地球环境研究所;
  • 出版日期:2019-02-15
  • 出版单位:土壤
  • 年:2019
  • 期:v.51;No.299
  • 基金:国家自然科学青年科学基金项目(41601558);; 广东省科技计划项目(2017A040406021,2018B030320003);广州市科技计划项目(201709010010);; 广东省科学院创新平台建设专项;; 广东省烟草专卖局科技项目(粤烟科项201705);; 广东省农业与农村厅“广东省粮食生产功能区土壤酸化数据分析”项目资助
  • 语种:中文;
  • 页:TURA201901013
  • 页数:10
  • CN:01
  • ISSN:32-1118/P
  • 分类号:92-101
摘要
土壤pH是影响粮食产量的重要因素,土壤酸化是造成土壤退化的重要因素且成因较为复杂,景观格局是生态过程的重要影响因素,其对土壤酸化的影响机制尚不明确。本研究以广州市流溪河流域作为研究区域,以样点缓冲区作为研究单元,基于2010年的759个耕地表层土壤样点pH和1980s土壤pH分布,使用景观格局指数、地统计与相关性分析方法,分析流域耕地土壤酸化时空变化特征,定量探究景观格局对耕地土壤酸化的时空影响。研究结果表明:①2010年流域耕地以酸性土壤为主,土壤样点pH均值为5.79,86.03%的样点和97.3%的耕地土壤pH<6.5;不同耕地类型土壤pH均值:水浇地(6.03)>水田(5.68)>旱地(5.62);各类土壤的pH均值:河积土田(5.92)>水稻土(5.84)>赤红壤(5.66)>紫色土(5.55)>黄壤(5.40)>红壤(5.39)。②1980—2010年土壤酸化显著,31.23%的样点和24.76%的耕地土壤pH下降;水田和旱地土壤酸化显著,水浇地有pH上升的趋势;除河积土田外各类耕地土壤酸化显著,黄壤最显著,红壤次之。③流域自上游往下游,耕地土壤pH递增且分布变得更复杂,上游和中游东西两侧及下游东侧的pH较小,且在1980—2010年酸性土壤向外蔓延趋势显著;中游中部及下游西侧出现了pH升高的复杂组合。④除旱地、灌木林地、草地和未利用地之外的类型景观格局指数都与耕地土壤pH存有显著相关性,pH与水域和道路密度景观水平指数呈显著正相关,本研究选出各类景观的土壤酸化敏感性景观格局指数,发现自然林的破坏,水田、园地和水域的破碎化,不透水建设用地的零散分布有造成耕地土壤酸化风险,大片水域的流水更新与水田的集聚化可降低土壤酸化风险。本研究可为耕地土壤酸化防治与景观优化提供参考依据。
        Soil acidity is a serious constraint to food production worldwide, soil degradation caused by soil acidification has become a global consensus. The impact factors of soil acidification were complex, landscape pattern is an important influential factor of ecological process, but the relationship between landscape pattern and soil acidification is not well understood.In order to discover the spatial and temporal patterns of farmland topsoil pH and watershed landscape, and to quantitatively examine the impacts of landscape pattern on farmland soil acidification. in this paper the Liuxihe watershed was selected as the study area and soil sample buffer as the research unit based on 759 farmland topsoil samples and land use pattern in 2010,distribution map of soil pH in 1980 s, and the research methods included landscape pattern index analysis, spatial analysis and correlation analysis. The results showed that: 1) The watershed was dominated by acidic soil in 2010, soil mean pH was 5.79,86.03% of the samples and 97.3% of the farmlands with pH<6.5; Soil pH were in an order of irrigated cropland(6.03)>irrigated paddy fields(5.68)>dry cropland(5.62), and in an order of alluvial soils(5.92)>paddy soils(5.84)>latosolic red earths(5.66)>purplish soils(5.55)>yellow earths(5.40)>red earths(5.39). 2)Soil acidification was significant during 1980—2010, soil pH decreased in 31.23% of the samples and 33.76 km2(24.76%) of the farmlands; Soil acidification in paddy fields and dry cropland were significant(pH reduction rate>27%), and irrigated farmland soil pH showed an increasing trend. Soil pH decreased in 92.21% of yellow earths and 54.31% of red earths. Except alluvial soils with an increasing trend of pH, farmland soil acidification was significant in other soils, among of which yellow earths was most significant, followed by red earths. 3)Farmland soil pH was increased and the distribution became more complicated from the upper reaches to lower reaches. pH were lower in the upper reaches, two side of middle reaches and the east sides of the lower reaches, acidic soil was spread outwards during 1980—2010 and soil acidification was obvious. Soil pH increased in complex pattern in the middle of middle reaches and the west side of lower reaches. 4)Except dry cropland, significant correlation were found between landscape metrics of different land use types and soil pH in shrubbery land, grass land and bare land. Soil pH was positively correlated with the densities of water area and road. The destruction of natural forest, the fragmentation of paddy fields, garden plots and water, scattered distribution of impermeable construction land may increase the risk of soil acidification while large area of water renewal and agglomeration of paddy fields may reduce it. These conclusions are useful for the control and remediation of farmland acidification.
引文
[1]Montanarella L,Badraoui M,Chude V,et al.The status of the world’s soil resources(main report)[R].Rome,Italy:Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils,2015:122-126
    [2]于天一,孙秀山,石程仁,等.土壤酸化危害及防治技术研究进展[J].生态学杂志,2014,33(11):3137-3143
    [3]Bloesch P,Moody P.Land:agricultural soil acidification[M].Department of Natural Resources and Water,Queensland Government Press,2011:5-20
    [4]Luewille A,Alewell C,Sven Erik J,et al.Acidification[M].Encyclopedia of Ecology,Oxford:Academic Press,2008:23-31
    [5]Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010
    [6]孟红旗.长期施肥农田的土壤酸化特征与机制研究[D].陕西咸阳:西北农林科技大学,2013:3-21
    [7]赵其国,黄国勤,马艳芹.中国南方红壤生态系统面临的问题及对策[J].生态学报,2013,33(24):7615-7622
    [8]郭治兴,王静,柴敏,等.近30年来广东省土壤pH值的时空变化[J].应用生态学报,2011,22(2):425-430
    [9]张福锁.我国农田土壤酸化现状及影响[J].民主与科学,2016(6):26-27
    [10]汪吉东,许仙菊,宁运旺,等.土壤加速酸化的主要农业驱动因素研究进展[J].土壤,2015,47(4):627-633
    [11]王嫒华,段增强,汤英,等.不同施肥处理对碱性设施土壤酸化的影响[J].土壤,2016,48(2):349-354
    [12]徐仁扣.土壤酸化及其调控研究进展[J].土壤,2015,47(2):238-244
    [13]李铖,李芳柏,吴志峰,等.景观格局对农业表层土壤重金属污染的影响[J].应用生态学报,2015,26(4):1137-1144
    [14]李慧,王芳,赵庚星,等.黄泛平原区不同土地利用方式下的土壤养分状况分析[J].水土保持学报,2016,30(3):154-158
    [15]张正栋,杨春红.近30年珠江北江上游土壤表层pH时空变化研究--以翁源县为例[J].华南师范大学学报(自然科学版),2014,46(6):107-113
    [16]Islam K R,Weil R R.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J].Agriculture,Ecosystems&Environment,2000,79(1):9-16
    [17]刘吉平,董春月,盛连喜,等.1955~2010年小三江平原沼泽湿地景观格局变化及其对人为干扰的响应[J].地理科学,2016,36(6):879-887
    [18]邬建国.景观生态学--格局、过程、尺度与等级[M].2版.北京:高等教育出版社,2007:5-45
    [19]傅伯杰,徐延达,吕一河.景观格局与水土流失的尺度特征与耦合方法[J].地球科学进展,2010,25(7):673-681
    [20]陈利顶,李秀珍,傅伯杰,等.中国景观生态学发展历程与未来研究重点[J].生态学报,2014,34(12):3129-3141
    [21]Nelson P N,Su N.Soil pH buffering capacity:Adescriptive function and its application to some acidic tropical soils[J].Australian Journal of Soil Research,2010,48(3):201-207
    [22]Yang Y,Ji C,Ma W,et al.Significant soil acidification across northern China's grasslands during 1980s-2000s[J].Global Change Biology,2012,18(7):2292-2300
    [23]姬钢.不同土地利用方式下红壤酸化特征及趋势[D].北京:中国农业科学院,2015:5-23
    [24]Jobbágy E G,Jackson R B.Patterns and mechanisms of soil acidification in the conversion of grasslands to forests[J].Biogeochemistry,2003,64:205-229
    [25]袁宇志,张正栋,蒙金华.基于SWAT模型的流溪河流域土地利用与气候变化对径流的影响[J].应用生态学报,2015,47(4):989-998
    [26]张景华,封志明,姜鲁光.土地利用/土地覆被分类系统研究进展[J].资源科学,2011,33(6):1195-1203
    [27]龙军,张黎明,沈金泉,等.复杂地貌类型区耕地土壤有机质空间插值方法研究[J].土壤学报,2014,51(6):1270-1281
    [28]孙慧,郭治兴,郭颖,等.广东省土壤Cd含量空间分布预测[J].环境科学,2017,38(5):2111-2124
    [29]谢云峰,陈同斌,雷梅,等.空间插值模型对土壤Cd污染评价结果的影响[J].环境科学学报,2010,30(4):847-854
    [30]白树彬,裴久渤,李双异,等.30年来辽宁省耕地土壤有机质与pH时空动态变化[J].土壤通报,2016,47(3):1-9
    [31]李明涛,王晓燕,刘文竹.潮河流域景观格局与非点源污染负荷关系研究[J].环境科学学报,2013,33(8):2296-2306
    [32]Buttigieg P L,Ramette A.A Guide to statistical analysis in microbial ecology:A community-focused,living review of multivariate data analyses[J].FEMS Microbiol.Ecology,2014,90:543-550
    [33]Ter Braak C J F,Smilauer P.Canoco for Windows version4.5[M].Biometris-Plant Research International,Amsterdam:Wageningen University Press,2002
    [34]Lep?J,?milauer P.Multivariate analysis of ecological data using CANOCO[M].London:Cambridge University Press,2003:1-51
    [35]王志刚,赵永存,廖启林,等.近20年来江苏省土壤pH值时空变化及其驱动力[J].生态学报,2008,28(2):720-727
    [36]杨杉,吴胜军,周文佐,等.三峡库区典型土壤酸碱缓冲性能及其影响因素研究[J].长江流域资源与环境,2016,25(1):163-170
    [37]马群,赵庚星.集约农区不同土地利用方式对土壤养分状况的影响[J].自然资源学报,2010,25(11):1834-1844
    [38]郭治兴,袁宇志,郭颖,等.基于地形因子的土壤有机碳最优估算模型[J].土壤学报,2017,54(2):331-343
    [39]孙慧,毕如田,袁宇志,等.广东省土壤镉含量影响因子解析与评估[J].环境科学学报,2016,36(11):4173-4183
    [40]杨胜天,李茜,盛浩然,等.土壤酸化-植被生产力空间信息模型构建及贵州典型森林对酸沉降的生态效应响应[J].环境科学学报,2010,30(1):34-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700