用户名: 密码: 验证码:
304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF
  • 作者:刘辉 ; 邱玮 ; 冷滨 ; 俞国军
  • 英文作者:LIU Hui;QIU Wei;LENG Bin;YU Guojun;School of Energy and Power Engineering,Changsha University of Scinece & Technology;Shanghai Institute of Applied Physics,Chinese Academy of Sciences;
  • 关键词:304不锈钢 ; 316H不锈钢 ; 氟化物熔盐 ; 晶间腐蚀 ; 纳米级析出相
  • 英文关键词:304 stainless steel;;316H stainless steel;;molten fluoride salt;;intergranular corrosion;;nano-sized precipitate
  • 中文刊名:ZGFF
  • 英文刊名:Journal of Chinese Society for Corrosion and Protection
  • 机构:长沙理工大学能源与动力工程学院;中国科学院上海应用物理研究所;
  • 出版日期:2019-02-15
  • 出版单位:中国腐蚀与防护学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(51301025,51141001和51501217)~~
  • 语种:中文;
  • 页:ZGFF201901007
  • 页数:8
  • CN:01
  • ISSN:21-1474/TG
  • 分类号:53-60
摘要
通过静态腐蚀及SEM/EDS、EPMA等分析表征技术,研究了304和316H不锈钢在700℃LiF-NaF-KF(FLiNaK)熔盐中的腐蚀行为。结果表明,这两种不锈钢在FLiNaK熔盐中的主要腐蚀形式是表面和近表面晶界处Cr的选择性流失。316H不锈钢由于含有Mo,腐蚀深度及失重均低于304不锈钢。腐蚀后,两种不锈钢的表面均出现了富集Ni和Fe的腐蚀层,而近表面区域均出现了大量的纳米级析出相。EDS分析结果显示,这些析出相是Cr和Al的氮化物或碳氮化物,析出相显著提高了材料的硬度。
        The corrosion behavior of 304 and 316H stainless steels in molten LiF-NaF-KF(FLiNaK)salt at 700 ℃ was studied by static immersion test, followed by SEM/EDS and EPMA analyses. Results show that the corrosion characteristics of the two stainless steels in molten FLiNaK salt are mainly selective depletion of Cr from the surface and grain boundaries underneath the surface. The corrosion depth and weight loss of 316H stainless steel are lower than those of 304 stainless steel, which may be ascribed to the Mo addition in 316H steel. After corrosion, the two steels show surface corrosion layers enriched in Ni and Fe, as well as nano-sized precipitates in the steel matrix near the surface. EDS analyses suggest these precipitates to be Cr and Al nitrides or carbonitrides. The formation of these precipitates significantly increases the hardness of the materials.
引文
[1]Cai X Z,Dai Z M,Xu H J.Thorium molten salt reactor nuclear energy system[J].Physics,2016,45:578(蔡翔舟,戴志敏,徐洪杰.钍基熔盐堆核能系统[J].物理,2016,45:578)
    [2]Jiang M H,Xu H J,Dai Z M.Advanced fission energy programTMSR nuclear energy system[J].Bull.Chin.Acad.Sci.,2012,27:366(江绵恒,徐洪杰,戴志敏.未来先进核裂变能--TMSR核能系统[J].中国科学院院刊,2012,27:366)
    [3]Serp J,Allibert M,Benes O,et al.The molten salt reactor(MSR)in generation IV:Overview and perspectives[J].Prog.Nucl.Energ.,2014,77,308
    [4]Williams D F.Assessment of candidate molten salt coolants for the NGNP/NHI Heat Transfer Loop[R].Oak Ridge:Oak Ridge National Lab,2006
    [5]Zhu Y S,Hou J,Yu G J,et al.Effects of exposing temperature on corrosion performance of weld joint of a Ni-Mo-Cr alloy[J].J.Fluorine Chem.,2016,182:69
    [6]Olson L C,Ambrosek J W,Sridharan K,et al.Materials corrosion in molten LiF-NaF-KF salt[J].J.Fluorine Chem.,2009,130:67
    [7]Wang Y L,Liu H J,Yu G J,et al.Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten(Li,Na,K)F at700℃[J].J.Fluorine Chem.,2015,178:14
    [8]Charalampos A,Anselmo T C,Alexandre Y K C,et al.Technical description of the“mark 1”pebble-bed fluoride-salt-cooled high-temperature reactor(PB-FHR)power plant[R].UCBTH-14-002.Berkeley:Department of Nuclear Engineering University of California,2014
    [9]Sellers R S,Cheng W J,Kelleher B C,et al.Corrosion of 316Lstainless steel alloy and Hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite[J].Nucl.Technol.,2014,188:192
    [10]Zheng G Q.Corrosion behavior of alloys in molten fluoride salts[D].Wisconsin:The University of Wisconsin-Madison,2015
    [11]Ding X B,Sun H,Yu G J,et al.Corrosion behavior of Hastelloy Nand 316L stainless steel in molten LiF-NaF-KF[J].J.Chin.Soc.Corros.Prot.,2015,35:543(丁祥彬,孙华,俞国军等.Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J].中国腐蚀与防护学报,2015,35:543)
    [12]Koger J W.Alloy compatibility with LiF-BeF2salts containing ThF4and UF4[R].ORNL-4286.Oak Ridge:Oak Ridge National Lab,1972
    [13]Kondo M,Nagasaka T,Sagara A,et al.Metallurgical study on corrosion of austenitic steels in molten salt LiF-BeF2[J].J.Nucl.Mater.,2009,386:685
    [14]Williams D F,Toth L M,Clarno K T.Assessment of candidate molten salt coolants for the Advanced high-temperature Reactor(AHTR)[R].ORNL/TM-2006/12.Oak Ridge:Oak Ridge National Lab,2006
    [15]Schneider M,Kremmer K,L?mmel C,et al.Galvanic corrosion of metal/ceramic coupling[J].Corros.Sci.,2014,80:191
    [16]Ozeryanaya I N.Corrosion of metals by molten salts in heat-treatment processes[J].Met.Sci.Heat Treat.,1985,27:184
    [17]Zeng C L,Li J,Zhou T.Galvanic corrosion in molten salts:A discussion of the corrosion mechanism of two-phase Ni-20Cr-20/30Cu alloys in eutectic(Li,K)2CO3at 650℃[J].Oxid.Met.,2005,64:207
    [18]Fontana M G,Staehle R W.Chromium depletion and void formation in Fe-Ni-Cr alloys during molten salt corrosion and related processes[A].In:Koger J W.Advances in Corrosion Science and Technology[M].New York:Plenum Press,1974
    [19]Ouyang F Y,Chang C H,You B C,et al.Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments[J].J.Nucl.Mater.,2013,437:201
    [20]Zhang S L,Li M J,Wang X B,et al.Intergranular corrosion of 18-8 austenitic stainless steel[J].J.Chin.Soc.Corros.Prot.,2007,27:124(张述林,李敏娇,王晓波等.18-8奥氏体不锈钢的晶间腐蚀[J].中国腐蚀与防护学报,2007,27:124)
    [21]Smith A F.The diffusion of chromium in type 316 stainless steel[J].Met.Sci.,1975,9:375
    [22]Olson L C,Sridharan K,Anderson M,et al.Intergranular corrosion of high temperature alloys in molten fluoride salts[J].Mater.High Temp.,2010,27:145
    [23]Bruemmer S M.Grain boundary chemistry and intergranular failure of austenitic stainless steels[J].Mater.Sci.Forum,1989,46:309
    [24]Zheng G Q,He L F,Carpenter D,et al.Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4(FLiBe)salt[J].J.Nucl.Mater.,2016,482:147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700