用户名: 密码: 验证码:
低频波动下考虑孔隙度与压力不同程度变化的岩土固结渗流分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration
  • 作者:郑黎明 ; 张洋洋 ; 李子丰 ; 马平华 ; 阳鑫军
  • 英文作者:ZHENG Li-ming;ZHANG Yang-yang;LI Zi-feng;MA Ping-hua;YANG Xin-jun;College of Vehicles and Energy of Yanshan University;Postdoctoral Research Station of Mechanical Engineering, Yanshan University;College of Petroleum Engineering, China University of Petroleum;
  • 关键词:固结模型 ; 渗流变化 ; 压力梯度 ; 数值分析 ; 近井带
  • 英文关键词:consolidation model;;seepage change;;pressure gradient;;numerical analysis;;nearby wellbore
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:燕山大学车辆与能源学院;燕山大学机械工程博士后流动站;中国石油大学(华东)石油工程学院;
  • 出版日期:2018-09-08 15:32
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.300
  • 基金:国家自然科学基金青年基金(No.51504215);; 中国博士后基金(2018M631765);; 河北省博士后择优资助(B2018003011);; 燕山大学博士基金(No.BL17024)~~
  • 语种:中文;
  • 页:YTLX201903037
  • 页数:12
  • CN:03
  • ISSN:42-1199/O3
  • 分类号:337-347+375
摘要
低频波动激励下实际开发储层物性发生改变,开展一维定压或定压力梯度情形岩土固结分析,难以反映具有变化流速、压力梯度的实际储层近井带波动激励效果。推导了低渗孔隙介质固结模型控制方程,建立了考虑不同孔隙度、压力变化程度的3种饱和单相渗流流体孔隙介质固结模型,开展一维、径向物理模型模拟求解,进而评价低频波动在恒定或变压力梯度、不同固结模型下的作用效果及参数影响敏感性。结果表明,考虑低渗储层渗流惯性作用和较强应力敏感性时,波动作用下(恒定压力梯度)一维模型的压力、流速、孔隙度增幅整体减小,(变压力梯度)径向物理模型波诱导作用出现不同变化,压力、孔隙度增幅增加,流速增幅降低;随振动参数增加,径向物理模型物性最大增幅数值波动性变化更为剧烈。研究结论反映了实际储层低频波动激励效果的复杂性及动力学分析的必要性。
        The physical properties in actual developed reservoirs change under the stimulation of low-frequency vibration. However,no change in porosity and pressure is usually assumed in classic consolidation model. The analysis of solid deformation is often based on a one-dimensional physical model with constant pressure(or pressure gradient) condition. Therefore, it is usually inadequate to simulate the effect of seismic production technology near the wellbore in actual developing reservoirs, which are with varying flow velocities and pressure gradients, with the classic mathematic model and one-dimensional physical model. The control equations of consolidation model for low permeability porous media are re-derived from the continuity equations of fluid and solid. Considering different assumptions of variation extents of porosity and pressure, three consolidation models are given. Numerical simulation is then carried out with one-dimensional(with constant pressure gradient) or radial(with changing pressure gradient) physical model.The effect of seismic production technology as well as its sensitivity under different fluid and vibration parameters are evaluated with different consolidation models. Because of the influences of the inertia effect of initial flow and the strong stress sensitivity in low permeability reservoir, the increases of pressure, flow velocity, and porosity are found to be lower under vibration than the case without vibration in one-dimensional model. However, the wave-induced effect behaves differently in radial physical model. The increases of pressure and porosity are both higher under vibration than the case without vibration, and the increase of flow velocity becomes lower under vibration. As the vibration parameter increases, the volatility of values representing the wave-induced effect becomes stronger when simulated with radial physical model and different consolidation models. The results reflect that it is necessary to carry out a dynamic analysis on the complex effects of artificial seismic technology in actual developing reservoirs.
引文
[1]GOODARZI M,MOHAMMADI S,JAFARI A.Numerical analysis of rock fracturing by gas pressure using the extended finite element method[J].Petroleum Science,2015,12(2):304-315.
    [2]KARVE P M,KUCUKCOBAN S,KALLIVOKAS L F.On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs[J].Computers&Geosciences,2015,19:233-256.
    [3]OEHRING J M.Electric powered hydraulic fracturing[C]//SPE/CSUR Unconventional Resources Conference.Calgary:Society of Petroleum Engineers,2015.
    [4]郑黎明,刘静,蒲春生,等.波动采油对饱和单相一维储层模型渗流的影响分析[J].岩石力学与工程学报,2016,35(10):2098-2105.ZHENG Li-ming,LIU Jing,PU Chun-sheng,et al.Seepage analysis under low-frequency vibration in one-dimensional porous media model saturated with single-phase percolating fluid[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2098-2105.
    [5]李传勋,徐超,谢康和.考虑非达西渗流和应力历史的土体非线性固结研究[J].岩土力学,2017,38(1):91-100.LI Chuan-xun,XU Chao,XIE Kang-he.Nonlinear consolidation of clayed soil considering non-Darcy flow and stress history[J].Rock and Soil Mechanics,2017,38(1):91-100.
    [6]HALL J,ALVAREZ E.Petrophysics for rock physics:what really matters at seismic scale?[C]//SPWLA 55th Annual Logging Symposium.Abu Dhabi:Society of Petrophysicists and Well-Log Analysis,2014.
    [7]周亚东,邓安,鹿群.非饱和土一维大变形固结模型[J].岩土力学,2018,39(5):1675-1681.ZHOU Ya-dong,DENG An,LU Qun.A one-dimensional consolidation model considering large strain for unsaturated soil[J].Rock and Soil Mechanics,2018,39(5):1675-1681.
    [8]ARIADJI T.Effect of vibration on rock and fluid properties:on seeking the vibroseismic technology mechanisms[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition.Jakarta:Society of Petroleum Engineers,2005.
    [9]PU C S,ZHENG L M,LIU J,et al.Performance of air foam flooding under low frequency vibration[J].Journal of Petroleum Science&Technology,2015,5(1):10-20.
    [10]ZIENKIEWICZ O C,CHANG C T,BETTESS P.Drained,undrained,consolidating and dynamic behaviour assumptions in soils[J].Géotechnique,1980,30(4):385-395.
    [11]ZHENG L M,PU C S,XU J X,et al.Modified model of porosity variation in seepage fluid-saturated porous media under elastic wave[J].Journal of Petroleum Exploration and Production Technology,2016,6(4):569-575.
    [12]李玉丹,董平川,张荷,等.低渗透油藏渗透率及启动压力梯度应力敏感性分析[J].油气地质与采收率,2016,23(6):57-63.LI Yu-dan,DONG Ping-chuan,ZHANG He,et al.Stress sensitivity analysis of permeability and threshold pressure gradient in low-permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2016,23(6):57-63.
    [13]KORRINGA J.On the Biot-Gassmann equations for the elastic module of the porous rocks(critical comment on a paper by J.G.Beryman)[J].Journal of the Acoustical Society of America,1981,70(6):1752-1753.
    [14]张志红,师玉敏,朱敏.黏土垫层水力-力学-化学耦合模型研究[J].岩土工程学报,2016,38(7):1283-1290.ZHANG Zhi-hong,SHI Yu-min,ZHU Min.Coupled hydro-mechanical-chemical model for clay liner[J].Chinese Journal of Geotechnical Engineering,2016,38(7):1283-1290.
    [15]王欢.全波形反演方法在复合地基承载力检测中的应用[J].地下空间与工程学报,2016,12(增刊2):784-791.WANG Huan.Full waveform inversion method and its application in the quantitative detection for the bearing capacity of composite foundation[J].Chinese Journal of Underground Space and Engineering,2016,12(Suppl.2):784-791.
    [16]宋元新.大功率低频谐振波采油波场分布与近井渗流特征研究[D].青岛:中国石油大学(华东),2010.SONG Yuan-xin.Study on wave field distribution and near-wellbore filtration features under low-frequency high-power resonance wave recovery[D].Qingdao:China University of Petroleum(East China),2010.
    [17]STROISZ A M,FJ?R E.Nonlinear elastic wave propagation in Castlegate sandstone[C]//45th U.S.Rock Mechanics/Geomechanics Symposium.San Francisco:American Rock Mechanics Association,2011.
    [18]卢明辉,巴晶,杨慧珠.含黏滞流体孔隙介质中的弹性波[J].工程力学,2009,26(5):36-40.LU Ming-hui,BA Jing,YANG Hui-zhu.Propagation of elastic waves in a viscous fluid-saturated porous solid[J].Engineering Mechanics,2009,26(5):36-40.
    [19]罗洁.稠油振动降压注汽工艺技术研究[D].青岛:中国石油大学(华东),2011.LUO Jie.Technical research of heavy oil vibrating depressurization and steam injection[D].Qingdao:China University of Petroleum(East China),2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700