用户名: 密码: 验证码:
淬火纵向裂纹的有限元模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element simulation of longitudinal quenching crack
  • 作者:刘玉 ; 左训伟 ; 陈乃录 ; 戎詠华 ; 刘少俊
  • 英文作者:LIU Yu;ZUO Xun-wei;CHEN Nai-lu;RONG Yong-hua;LIU Shao-jun;School of Materials Science and Engineering;Shanghai Jiao Tong University;School of Materials Engineering;Shanghai University of Engineering Science;China Coal Technology Engineering Group Chongqing Research Institute;
  • 关键词:淬火纵向裂纹 ; 有限元模拟 ; 淬火应力
  • 英文关键词:longitudinal quenching crack;;finite element simulation;;quenching stress
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:上海交通大学材料科学与工程学院;上海工程技术大学材料工程学院;中煤科工集团重庆研究院有限公司;
  • 出版日期:2019-03-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.225
  • 基金:国家自然科学基金青年科学基金(51801125);国家自然科学基金(51771114);; 中国博士后科学基金(2017M621464)
  • 语种:中文;
  • 页:JSCL201903020
  • 页数:8
  • CN:03
  • ISSN:11-4545/TG
  • 分类号:166-173
摘要
淬火纵向裂纹在热处理工业中十分常见。本工作结合实验和有限元模拟的方法对16 mm直径的42CrMo圆柱件在不同的淬火介质(清水、油、盐水单液淬火和清水-油双液淬火)及淬火工艺下的淬火开裂现象进行了研究。经过清水淬火后的圆柱件均出现了纵向裂纹,但经油、盐水和清水-油双液淬火后的试样均未出现裂纹。通过有限元方法对以上不同淬火工艺的淬火应力进行了计算,根据计算结果对全淬透淬火件的淬火应力分布进行了分析。残余应力计算结果表明,42CrMo圆柱件在清水中淬火开裂的原因是由其表面较高的拉应力引起;经盐水淬火后的试样表面应力状态为压应力,其对淬火开裂的预防具有有益作用。基于淬火开裂实验和热应力及相变应力的计算结果,提出了两种预防全淬透件纵向开裂的方法。通过分析样品在清水淬火时的瞬时应力,对淬火开裂时的时间进行了估计。
        Longitudinal quenching cracks are very common in heat treatment industry. In this paper, the quenching cracking of 42 CrMo bars with 16 mm diameter under different quenchants(water, oil, brine and water-oil double liquid quenching) and quenching process was studied by means of experiment and finite element simulation. After quenching with water, longitudinal cracks were found in all the samples, but no cracks were found in the samples quenched by oil, brine and water-oil. The quenching stress of different quenching processes was calculated by finite element method, and the quenching stress distribution of through-hardened quenched parts was analyzed according to the calculation results. The results of residual stress calculation show that the reason of quenching cracking of the 42 CrMo bars quenched in water is caused by the higher tensile stress on the surface, and the surface stress state of the specimen after quenching with brine is compressive stress, which is beneficial to the prevention of quenching cracking. Based on the experimental results of quenching cracking and the calculated results of thermal stress and phase transformation stress, two methods to prevent longitudinal cracking of the through-hardened quenched parts are proposed. The time of quenching cracking is estimated by analyzing the instantaneous stress of the sample during water quenching.
引文
[1] Jung M,Kang M,Lee Y K.Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel[J].Acta Materialia,2012,60(2):525-536.
    [2] Isomura R,Sato H.On quench-cracking phenomena as viewed from the aspect of quenching stresses[J].Journal of the Japan Institute of Metals,1961,25(5):360-364.
    [3] Arimoto K,Lambert D,Lee K,et al.Prediction of quench cracking by computer simulation[C]//19th ASM Heat Treating Society Conference Proceedings Including Steel Heat Treating in the New Millennium,2001:435-440.
    [4] Arimoto K,Ikuta F,Horino T,et al.Preliminary study to identify criterion for quench crack prevention by computer simulation[J].Transactions of Materials and Heat Treatment,2004,25(5):486-493.
    [5] Scott H.Origin of quenching cracks[J].Scientific Papers of the Bureau of Standards,1925,20:399-444.
    [6] Moore M G,Evans W P.Mathematical correction for stress in removed layers in X-Ray diffraction residual stress analysis[J].SAE Transactions,1958,66:340-345.
    [7] Inoue T,Arimoto K.Development and implementation of cae system “hearts” for heat treatment simulation based on metallo-thermo-mechanics[J].Journal of Materials Engineering and Performance,1997,6(1):51-60.
    [8] Denis S,Sj?str?m S,Simon A.Coupled temperature,stress,phase transformation calculation[J].Metallurgical Transactions A,1987,18(7):1203-1212.
    [9] Liu Y,Qin S W,Zhang J Z,et al.Influence of transformation plasticity on distribution of internal stress in three water-quenched cylinders[J].Metallurgical and Materials Transactions A,2017,48(10):4943-4956.
    [10] Liu Y,Qin S W,Hao Q G,et al.Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders[J].Metallurgical and Materials Transactions A,2017,48(3):1402-1413.
    [11] Non-Destructive Testing-Test Method for Residual Stress Analysis by X-ray Diffraction[S].European Standard EN15305,2008.
    [12] Leblond J B,Mottet G,Devaux J,et al.Mathematical models of anisothermal phase transformations in steels,and predicted plastic behaviour[J].Materials Science and Technology,1985,1(10):815-822.
    [13] Bejan A,Kraus A D.Heat Transfer Handbook[M].New Jersey:John Wiley and Sons,2003.
    [14] Lee S J.Evaluation of empirical kinetics models of athermal martensite transformation in plain carbon and low alloy steels[J].Advanced Materials Research,2013,798-799:39-44.
    [15] Koistinen D P,Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J].Acta Metallurgica,1959,7(1):59-60.
    [16] Van Bohemen S M C,Sietsma J.Effect of composition on kinetics of athermal martensite formation in plain carbon steels[J].Materials Science and Technology,2009,25(8):1009-1012.
    [17] Austin J B,Rickett R L.Kinetics of the decomposition of austenite at constant temperature[J].Transactions of the American Institute of Mining and Metallurgical Engineers,1939,135:396-415.
    [18] George F V V(Eds.).Atlas of Time-Temperature Diagrams for Irons and Steels[M].ASM International,Materials Park,Ohio,1991.
    [19] Scheil V E.Anlaufzeit der austenitumwandlung[J].Archiv fur das Eisenhuttenwesen,1935,12:565-567.
    [20] Fischer F D,Reisner G,Werner E,et al.A new view on transformation induced plasticity (TRIP)[J].International Journal of Plasticity,2000,16(7/8):723-748.
    [21] Fischer F D,Sun Q P,Tanaka K.Transformation-induced plasticity (TRIP)[J].Applied Mechanics Reviews,1996,49(6):317-364.
    [22] Liu C C,Yao K F,Xu X J,et al.Models for transformation plasticity in loaded steels subjected to bainitic and martensitic transformation[J].Materials Science and Technology,2001,17(8):983-988.
    [23] Leblond J B,Devaux J,Devaux J C.Mathematical modelling of transformation plasticity in steels I:Case of ideal-plastic phases[J].International Journal of Plasticity,1989,5(6):551-572.
    [24] 孙盛玉.热处理裂纹若干问题的初步探讨[J].金属热处理,2009,34(10):109-114.SUN Sheng-yu.Preliminary discuss on some problems of heat treatment cracks[J].Heat Treatment of Metals,2009,34(10):109-114.
    [25] 钢的热处理裂纹和变形编写组.钢的热处理裂纹和变形[M].北京:机械工业出版,1978.
    [26] 吕利太.淬火介质[M].北京:中国农业机械出版社,1982.
    [27] 牟能文,刘晓磊.减少45钢淬火开裂[J].四川兵工学报,2009,30(5):93-95.MOU Neng-wen,LIU Xiao-lei.Avoiding of quenching crack of 45 steel[J].Sichuan Ordnance Journal,2009,30(5):93-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700