用户名: 密码: 验证码:
柔性自支撑PDDA-Si/G纳米复合薄膜的制备及储锂性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film
  • 作者:张亚婷 ; 张凯博 ; 贾凯丽 ; 贺新福 ; 刘国阳 ; 王伟 ; 张永玲 ; 邱介山
  • 英文作者:ZHANG Yating;ZHANG Kaibo;JIA Kaili;HE Xinfu;LIU Guoyang;WANG Wei;ZHANG Yongling;QIU Jieshan;College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources;School of Chemical Engineering, Dalian University of Technology;College of Chemical Engineering, Beijing University of Chemical Technology;
  • 关键词:复合材料 ; 纳米结构 ; ; 石墨烯薄膜 ; 电化学
  • 英文关键词:composites;;nanostructure;;silicon;;graphene film;;electrochemistry
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:西安科技大学化学与化工学院;国土资源部煤炭资源勘查与综合利用重点实验室;大连理工大学化工学院;北京化工大学化学工程学院;
  • 出版日期:2018-12-27 14:26
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(U1703251);; 陕西省重点研发计划项目(2017ZDCXL-GY-10-01-02);; 国土资源部煤炭资源勘查与综合利用重点实验室开放研究课题项目(KF2016-4)
  • 语种:中文;
  • 页:HGSZ201903040
  • 页数:8
  • CN:03
  • ISSN:11-1946/TQ
  • 分类号:364-371
摘要
通过静电自组装技术成功制备得到柔性自支撑聚二烯二甲基氯化铵-Si/石墨烯(PDDA-Si/G)纳米复合薄膜。该复合薄膜无添加黏结剂及导电炭黑且仍能保持电极结构的完整性,其中石墨烯提供完整的导电网络和机械韧性。电化学测试结果表明,当电流密度为0.2 A/g,复合材料的比容量可达1439.9 (mA·h)/g,库仑效率保持98%以上。且在高电流密度(2 A/g)下,复合材料的比容量仍可维持在499.9 (mA·h)/g,远高于商品化纯Si电极的电化学性能。
        Silicon is an active electrode material for future commercial lithium-ion batteries with extremely high theoretical specific capacity(4200(mA · h)/g). However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the capacity and cycle life. A flexible self-supporting polydiene dimethylammonium chloride-Si/graphene(PDDA-Si/G) nanocomposite film was successfully prepared by electrostatic self-assembly technique. The composite film can maintain the integrity of electrode structure without adding binder and conductive carbon black. Graphene provides complete conductive network and mechanical toughness. The electrochemical test results show that when the current density was 0.2 A/g, the specific capacity of PDDA-Si/G composite could reach 1439.9(mA · h)/g and the Coulombic efficiency was above 98%. The specific capacity was 1209.3(mA · h)/g after 80 cycles. The specific capacity still maintained 499.9(mA · h)/g at a high current density(2 A/g).
引文
[1]Li D D,Ding L X,Chen H B,et al.Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithiumion batteries[J].J.Mater.Chem.A,2014,2(39):16617-16622.
    [2]Kong D Z,Luo J S,Wang Y L,et al.Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays:morphology control and electrochemical energy storage[J].Adv.Funct.Mater.,2014,24(24):3815-3826.
    [3]Son I H,Hwan P J,Kwon S,et al.Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J].Nature Communications,2015,6(1):8393.
    [4]Ko M,Chae S,Jeong S,et al.Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for highrate lithium ion batteries[J].ACS Nano,2012,8(8):8591.
    [5]Wu H,Zheng G,Liu N,et al.Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J].Nano Letters,2012,12(2):904.
    [6]Ji J,Ji H,Zhang L L,et al.Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries[J].Advanced Materials,2013,25(33):4673-4677.
    [7]Zhao C,Yu C,Qiu B,et al.Ultrahigh rate and long-life sodiumion batteries enabled by engineered surface and near-surface reactions[J].Advanced Materials,2018,30(7):1702486.
    [8]Yao W Q,Chen J,Zhan L,et al.Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage[J].ACS Applied Materials&Interfaces,2017,9(45):39371-39379.
    [9]Fang C C,Deng Y F,Xie Y,et al.The improved electrochemical performance of Si nanoparticle anode material by synergistic strategies of polydopamine and graphene oxide coatings[J].Journal of Physical Chemistry C,2015,119(4):1720-1728.
    [10]何大方,李丽鲜,白凤娟,等.结构有序的Si/void/C/graphene纳米复合结构的制备及储锂性能[J].化工学报,2017,68(9):3600-3606.He D F,Li L X,Bai F J,et al.Design,preparation,and lithiumstorage properties of ordered Si/void/C/graphene nanocomposites[J].CIESC Journal,2017,68(9):3600-3606.
    [11]Han Y,Zou J,Li Z,et al.Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries[J].ACS Nano,2018,12(5):4835-4843.
    [12]Li X H,Wu M Q,Feng T T,et al.Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries[J].RSC Advances,2017,7(76):48286-48293.
    [13]Son I H,Park J H,Park S,et al.Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J].Nature Communications,2017,8(1):1561.
    [14]孔丽娟,周晓燕,范赛英,等.组氨酸功能化石墨烯量子点@纳米硅负极材料的制备及电化学性能研究[J].化学学报,2016,74(7):620-628.Kong L J,Zhou X Y,Fan S Y,et al.Study on the synthesis and electrichemical performance of histidine-functionalized graphene quantum dots@silicon composite anode material[J].Acta Chimica Sinica,2016,74(7):620-628.
    [15]Liu Z J,Guo P Q,Liu B L,et al.Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode[J].Applied Surface Science,2017,396:41-47.
    [16]An Y L,Fei H F,Zeng G F,et al.Green,scalable,and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries[J].ACSNano,2018,12(5):4993-5002.
    [17]Liang G M,Qin X Y,Zou J S,et al.Electrosprayed siliconembedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J].Carbon,2018,127:424-431.
    [18]Feng J K,Zhang Z,Ci L J,et al.Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries[J].Journal of Power Sources,2015,287:177-183.
    [19]Wei S,Hu R Z,Zhang H Y,et al.A long-life nano-silicon anode for lithium ion batteries:supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling[J].Electrochimica Acta,2016,187:1-10.
    [20]Huang R A,Guo Y Z,Chen Z N,et al.An easy and scalable approach to synthesize three-dimensional sandwich-like Si/polyaniline/graphene nanoarchitecture anode for lithium ion batteries[J].Ceramics International,2018,44(4):4282-4286.
    [21]Lin N,Xu T J,Li T Q,et al.Controllable self-assembly of micronanostructured Si-embedded graphite/graphene composite anode for high-performance li-Ion batteries[J].ACS Applied Materials&Interfaces,2017,9(45):39318-39325.
    [22]Lee B,Liu T,Sun K K,et al.Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries[J].Carbon,2017,119:438-445.
    [23]Yue H W,Wang S Y,Yang Z B,et al.Ultra-thick porous films of graphene-encapsulated silicon nanoparticles as flexible anodes for lithium ion batteries[J].Electrochimica Acta,2015,174:688-695.
    [24]Luo Z P,Xiao Q Z,Lei G T,et al.Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J].Carbon,2016,98:373-380.
    [25]李海,吕春祥.炭涂层硅/石墨烯纳米复合材料的制备及其储锂性能[J].新型炭材料,2014,29(4):295-300.Li H,Lyu C X.Preparation and lithium storage performance of a carbon-coated Si/graphene nanocomposite[J].New Carbon Materials,2014,29(4):295-300.
    [26]Chang P,Liu X,Zhao Q,et al.Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J].ACS Applied Materials&Interfaces,2017,9(37):31879.
    [27]张兴帅,许笑目,郭玉忠,等.锂离子电池Si/RGO@PANI三明治纳米结构负极材料的制备与电化学性能[J].无机化学学报,2017,33(3):377-382.Zhang X S,Xu X M,Guo Y Z,et al.Preparation and electrochemical properties of sandwich-like Si/RGO@PANInanocomposites as anode for lithium ion battery[J].Chinese Journal of Inorganic Chemistry,2017,33(3):377-382.
    [28]刘超,文豪,张楚虹.自支撑纳米硅/石墨烯复合纸柔性电极的制备及其电化学性能的研究[J].材料导报,2016,30(18):26-29.Liu C,Wen H,Zhang C H.Preparation of free-standing flexible nano-silicon/graphene composite paper electrode for lithium-ion batteries[J].Materials Review,2016,30(18):26-29.
    [29]Shang H,Zuo Z C,Yu L,et al.Low-temperature growth of allcarbon graphdiyne on a silicon anode for high-performance lithium-ion latteries[J].Advanced Materials,2018:1801459.
    [30]Zhu C R,Chao D L,Sun J,et al.Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots[J].Advanced Materials Interfaces,2015,2(2):239-245.
    [31]Zhang Y T,Zhang K B,Jia K L,et al.Preparation of coal-based graphene quantum dots/α-Fe2O3nanocomposites and their lithium-ion storage properties[J].Fuel,2019,241:646-652.
    [32]Wang Z L,Xu D,Wang H G,et al.In situ fabrication of porous graphene electrodes for high-performance energy storage[J].ACSNano,2013,7(3):2422-2430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700