用户名: 密码: 验证码:
二元复合溶液脱除烟气中CO_2的过程模拟与评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process simulation and evaluation of CO_2 removal from flue gas by binary compound solutions
  • 作者:方童波 ; 赵兵 ; 王大淇 ; 苏亚欣
  • 英文作者:FANG Tongbo;ZHAO Bingtao;WANG Daqi;SU Yaxin;School of Energy and Power Engineering, University of Shanghai for Science and Technology;School of Environmental Science and Engineering, Donghua University;
  • 关键词:烟道气 ; 二氧化碳捕集 ; Rate-based模型 ; 二元混合物 ; 化学吸收
  • 英文关键词:flue gas;;CO_2 capture;;Rate-based model;;binary mixture;;chemical absorption
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:上海理工大学能源与动力工程学院;东华大学环境科学与工程学院;
  • 出版日期:2019-03-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.330
  • 基金:上海市自然科学基金(17ZR1419300)
  • 语种:中文;
  • 页:HGJZ201903049
  • 页数:6
  • CN:03
  • ISSN:11-1954/TQ
  • 分类号:421-426
摘要
为探究吸收容量大、再生能力较强的吸收剂复合吸收燃烧烟气中CO_2的性能,采用N-甲基二乙醇胺-哌嗪(MDEA-PZ)、碳酸钾-哌嗪(K_2CO_3-PZ)以及氨水-哌嗪(NH_3-PZ) 3种二元复合溶液,基于Rate-based模型对其进行脱碳性能过程模拟。以吸收剂的摩尔流量、温度以及摩尔分数配比(X∶PZ) 3个因素进行单因素研究,并在此基础上采用正交试验的方法得出最佳工艺方案。结果表明,随着吸收剂的摩尔流量上升、温度下降以及吸收剂中PZ摩尔分数上升,CO_2吸收效率呈上升趋势。在最佳工艺方案中,K_2CO_3-PZ二元复合溶液最佳吸收温度为40℃,MDEA-PZ和NH_3-PZ两种二元复合溶液最佳吸收温度为30℃;3种二元复合溶液最佳摩尔流量为3.5×105kmol/h,最佳摩尔分数配比为60%∶40%。在各自最佳工艺以及其他条件相同的情况下,吸收CO_2性能的优劣依次为MDEA-PZ、NH_3-PZ以及K_2CO_3-PZ。
        To investigate the performance of the absorbents with high absorption capacity and strong regenerative capacity to compound absorbing CO_2 in the combustion flue gas, three binary compound solutions of methyldiethanolamine-piperazine(MDEA-PZ), potassium carbonate-piperazine(K_2 CO_3-PZ)and ammonia-piperazine(NH_3-PZ) were selected. Based on the Rate-based model, the decarburization performance process simulations were conducted. The effect of three factors of absorbent, including molar flow rate, temperature and molar concentration ratio(X∶PZ), were studied by single-factor method. On this basic, the optimal process conditions were obtained by orthogonal test method. The result showed that, as the molar flow rate of the absorbent increases, the temperature of the absorbent decreases, and the PZ molar concentration in the absorbent increases, the CO_2 absorption efficiency increases. Under the optimal process conditions, the optimal absorption temperature of the K_2 CO_3-PZ binary compound solution is 40°C. The optimal absorption temperature of the binary compound solution of MDEA-PZ and NH_3-PZ is 30°C. The optimal molar flow rate of the three binary compound solutions is 3.5×105 kmol/h,and the optimal molar concentration ratio is 60%∶40%. Under each optimal process conditions and other same conditions, the order of CO_2 absorption performance is MDEA-PZ>NH_3-PZ>K_2 CO_3-PZ.
引文
[1]高凤玲,崔国民,黄晓璜.CO2的温室效应饱和度分析及其大气体积分数预测模型[J].上海理工大学学报,2017(4):323-328.GAO Fengling,CUI Guomin,HUANG Xiaohuang.Greenhouse effect saturation analysis and the atmospheric concentration prediction model of CO2[J].Journal of University of Shanghai for Science&Technology,2017(4):323-328.
    [2]何书申,赵兵涛,俞致远.基于胺法的旋流喷淋气液吸收烟气CO2的性能[J].上海理工大学学报,2016,38(1):25-30.HE Shushen,ZHAO Bingtao,YU Zhiyuan.Performance of CO2capture from flue gas with amines in vortex flow spraying scrubber[J].Journal of University of Shanghai for Science&Technology,2016,38(1):25-30.
    [3]周响球.燃煤电厂烟气二氧化碳捕获系统的仿真研究[D].重庆:重庆大学,2008.ZHOU Xiangqiu.Simulation of CO2capture system for coal-fired power plants[D].Chongqing:Chongqing University,2008.
    [4]ARACHCHIGE U S P R,MELAAEN M C.Aspen Plus simulation of CO2removal from coal and gas fired power plants[J].Energy Procedia,2012,23(2):391-399.
    [5]YU Jingwen,WANG Shujuan,YU Hai.Experimental studies and Rate-based simulations of CO2absorption with aqueous ammonia and piperazine blended solutions[J].International Journal of Greenhouse Gas Control,2016,50:135-146.
    [6]张亚萍,刘建周,季芹芹,等.醇胺法捕集燃煤烟气CO2工艺模拟及优化[J].化工进展,2013,32(4):930-935.ZHANG Yaping,LIU Jianzhou,JI Qinqin,et al.Process simulation and optimization of flue gas CO2capture by the alkanolamine solutions[J].Chemical Industry and Engineering Progress,2013,32(4):930-935.
    [7]ZHANG Minkai,GUO Yincheng.A novel process for NH3-based CO2capture by integrating flow-by capacitive ion separation[J].International Journal of Greenhouse Gas Control,2016,54:50-58.
    [8]ZHAO Bin,LIU Fangzheng,CUI Zheng,et al.Enhancing the energetic efficiency of MDEA/PZ-based CO2capture technology for a 650 MWpower plant:Process improvement[J].Applied Energy,2017,185:362-375.
    [9]AROONWILAS A,VEAWAB A.Integration of CO2capture unit using blended MEA-AMP solution into coal-fired power plants[J].Energy Procedia,2009,1(1):4315-4321.
    [10]张克舫,刘中良,王远亚,等.化学吸收法CO2捕集解吸能耗的分析计算[J].化工进展,2013,32(12):3008-3014.ZHANG Kefang,LIU Zhongliang,WANG Yuanya,et al.Analysis and calculation of the desorption energy consumption of CO2capture process by chemical absorption method[J].Chemical Industry and Engineering Progress,2013,32(12):3008-3014.
    [11]DEY A,AROONWILAS A.CO2absorption into MEA-AMP blend:mass transfer and absorber height index[J].Energy Procedia,2009,1(1):211-215.
    [12]骆培成,焦真,张志炳.填料塔中碳酸钾/哌嗪混合吸收液脱除CO2的体积传质系数[J].化工学报,2005,56(1):53-57.LUO Peicheng,JIAO Zhen,ZHANG Zhibing.Volumetric mass transfer coefficients of dilute CO2absorption into mixtures of potassium carbonate and piperazine in packed column[J].Journal of Chemical Industry&Engineering(China),2005,56(1):53-57.
    [13]MORES P,RODRíGUEZ N,SCENNA N,et al.CO2capture in power plants:minimization of the investment and operating cost of the postcombustion process using MEA aqueous solution[J].International Journal of Greenhouse Gas Control,2012,10(1):148-163.
    [14]ZHANG Minkai,GUO Yincheng.Rate-based modeling of absorption and regeneration for CO2capture by aqueous ammonia solution[J].Applied Energy,2013,111(4):142-152.
    [15]HUAMáN R N E.Optimized simulation of CO2removal process from coal fired power plants with MEA by sensitivity analysis in Aspen plus[J].Labor&Engenho,2017,11(2):191.
    [16]BRAVO J L.Mass transfer in gauze packings[J].Hydrocarbon Processing,1985,64(1):91-95.
    [17]CHILTON T H,COLBURN A P.Mass transfer(absorption)coefficients prediction from data on heat transfer and fluid friction[J].Ind.Eng.Chem.,1934:26.
    [18]ARSHAD M,WUKOVITS W,FRIEDL A.Simulation of CO2absorption using the system K2CO3-piperazine[J].Chemical Engineering Transactions,2014,39(2):577-582.
    [19]BISHNOI S,ROCHELLE G T.Absorption of carbon dioxide into aqueous piperazine:reaction kinetics,mass transfer and solubility[J].Chemical Engineering Science,2000,55(22):5531-5543.
    [20]ALIE C,BACKHAM L,CROISET E,et al.Simulation of CO2capture using MEA scrubbing:a flowsheet decomposition method[J].Energy Conversion&Management,2005,46(3):475-487.
    [21]江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究[D].杭州:浙江大学,2015.JIANG Wenmin.Simulation and experimental research of CO2chemical absorption system[D].Hangzhou:Zhejiang University,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700