用户名: 密码: 验证码:
基于正交试验的扭转流换热器壳程结构优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment
  • 作者:古新 ; 郑志阳 ; 罗元坤 ; 熊晓朝 ; 张大波
  • 英文作者:GU Xin;ZHENG Zhiyang;LUO Yuankun;XIONG Xiaochao;ZHANG Dabo;Key Laboratory of Process Heat Transfer and Energy Saving of Henan Province, Zhengzhou University;Zhengzhou Tobacco Research Institute of China National Tobacco Corp.;
  • 关键词:管壳式换热器 ; 扭转流 ; 正交试验 ; 数值模拟 ; 传热强化
  • 英文关键词:shell-and-tube heat exchanger;;twisty flow;;orthogonal experiment;;numerical simulation;;heat transfer enhancement
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:郑州大学河南省过程传热与节能重点实验室;中国烟草总公司郑州烟草研究院;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家自然科学基金(21776263,51006092);; 河南省科技攻关计划(182102310022);; 河南省高等学校重点科研项目应用研究计划(18A470001)
  • 语种:中文;
  • 页:HGJZ201904010
  • 页数:8
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:99-106
摘要
建立扭转流管壳式换热器周期性全截面数值计算模型,采用对比实验验证了数值模拟方法及其结果的可靠性。影响扭转流换热器壳程流体换热和流阻性能的主要因素有相邻两组类梯形导流板间距、导流板宽度、导流板倾斜角度以及每组导流板的数量。设计正交试验,综合研究各参数对扭转流换热器壳程流体传热系数、压降及综合性能的影响,并对影响显著的结构参数进行了优化。结果表明,在研究参数范围内,影响扭转流换热器壳程流体综合性能的主次顺序为:相邻两组导流板间距>每组导流板数量>导流板倾斜角度>导流板宽度。综合性能最优的结构参数组合是相邻两组导流板间距为100mm、每组导流板个数为2、导流板倾斜角度为52.5°、导流板宽度为100mm,综合性能最高为114.9。研究结果为管壳式换热器壳程结构参数进行多目标优化提供了一种新方法,具有一定的指导意义。
        Periodic entire cross-section computation model of twisty flow shell-and-tube heat exchanger is established, and the reliability of numerical simulation method and its results is verified by contrast experiment. The major factors affecting the heat transfer and flow resistance performance on shell side fluid of twisty flow heat exchanger include the spacing between two adjacent groups of trapezoidal baffles,the width of baffles, the inclination angle of baffles and the number of per group of baffles. The various parameters influencing heat transfer coefficient, pressure drop and comprehensive performance on shell side fluid of twisty flow heat exchanger are studied by designing orthogonal experiment, and the structural parameters with significant effect are optimized. The results show that in the range of research parameters,the main and secondary order which influence the comprehensive performance on shell side fluid of twisty flow heat exchanger are that the spacing between two adjacent groups of trapezoidal baffles > the number of per group of baffles > the inclination angle of baffles > the width of baffles. The optimal structural parameters of combination considered comprehensive performance should be that the spacing between two adjacent groups of trapezoidal baffles is 100 mm, the number of per group of baffles is 2,the inclination angle of baffles is 52.5° and the width of baffles is 100 mm, then the comprehensive performance is 114.9. The results of the study provide a new method for multi-objective optimization of shell-side structural parameters of shell-and-tube heat exchanger which has certain guiding significance.
引文
[1]付磊,曾燚林,唐克伦,等.管壳式换热器壳程流体流动与传热数值模拟[J].压力容器, 2012, 29(5):36-41.FU Lei, ZENG Yilin, TANG Kelun, et al.Numerical simulation study of shell-side fluid flow and heat transfer in shell-and-tube heat exchanger[J].Pressure Vessel Technology, 2012, 29(5):36-41.
    [2] SALAHUDDIN U, BILAL M, EJAZ H.A review of the advancements made in helical baffles used in shell and tube heat exchangers[J].International Communications in Heat&Mass Transfer, 2015, 67:104-108.
    [3]耿伟轩,张红,陶汉中,等.管板间隙对管壳式换热器流动与传热的影响研究[J].压力容器, 2012, 29(5):10-14,51.GENG Weixuan, ZHANG Hong, TAO Hanzhong, et al. Study on the Influence of baffle-tube clearance on the fluid flow and heat transfer of shell and tube heat exchanger[J].Pressure Vessel Technology, 2012,29(5):10-14, 51.
    [4] RAJA M, VIJAYAN R, DINESHKUMAR P, et al. Review on nanofluids characterization, heat transfer characteristics and applications[J]. Renewable&Sustainable Energy Reviews, 2016, 64:163-173.
    [5]肖武,史朝霞,姜晓滨,等.考虑管壳式换热器传热强化的换热网络综合研究进展[J].化工进展, 2018, 37(4):1267-1275.XIAO Wu, SHI Zhaoxia, JIANG Xiaobin, et al. Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers[J]. Chemical Industry and Engineering Progress, 2018, 37(4):1267-1275.
    [6] MAJUMDER M, BARMAN R N, ROY U. Designing configuration of shell-and-tube heat exchangers using grey wolf optimisation technique[J]. International Journal of Automation&Control, 2017, 11(3):274.
    [7]古新.管壳式换热器数值模拟与斜向流换热器研究[D].郑州:郑州大学, 2006.GU Xin. Numerical simulation of shell-and-tube heat exchanger and research on side ling-flow heat exchanger[D]. Zhengzhou:Zhengzhou University, 2006.
    [8] SALEH K, AUTE V, RADERMACHER R, et al. Chevron plate heat exchanger optimization using efficient approximation-assisted multiobjective optimization techniques[J]. Hvac&R Research, 2013, 19(7):788-799.
    [9]王思莹,李卫红.基于有限元的对管壳式换热器管板的优化设计[J].化工技术与开发, 2017, 46(12):55-57.WANG Siying, LI Weihong. Optimization design of tube plate for tube and tube shell heat exchanger based on finite element[J]. Technology&Development of Chemical Industry, 2017, 46(12):55-57.
    [10] PATEL V K, RAO R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11):1417-1425.
    [11]李青,孟玮,王鹏.基于Fluent的管壳式换热器数值模拟及优化[J].电子机械工程, 2016, 32(4):27-31, 53.LI Qing, MENG Wei, WANG Peng. Numerical simulation and optimization of tube-and-shell heat exchanger based on fluent[J].Electro-Mechanical Engineering, 2016, 32(4):27-31, 53.
    [12]王斯民,王萌萌,顾昕,等,螺旋折流板换热器结构参数多目标优化的数值模拟[J].西安交通大学学报, 2015, 49(11):14-19, 109.WANG S M, WANG M M, GU X, et al. Multi-objective optimization on the structural parameters of shell-and-tube heat exchanger with helical baffles[J]. Journal of Xi'an Jiaotong University, 2015, 49(11):14-19, 109.
    [13]刘景成,张树有,徐敬华,等.板翅换热器导流结构非线性映射与性能多目标优化[J].化工学报, 2015, 66(5):1821-1830.LIU Jingcheng, ZHANG Shuyou, XU Jinghua, et al. Non-linear mapping and multi-objective optimization of leading flow structure in plate-fin heat exchanger[J]. CIESC Journal, 2015, 66(5):1821-1830.
    [14] MIRZAEI M, HAJABDOLLAHI H, FADAKAR H. Multi-objective optimization of shell-and-tube heat exchanger by constructal theory[J]. Applied Thermal Engineering, 2017, 125:9-19.
    [15]张蒙蒙,王珂,王永庆,等.基于正交试验设计的CO2微通道气冷器流量分配研究[J].化工设备与管道, 2015, 52(2):38-43.ZHANG Mengmeng, WANG Ke, WANG Yongqing, et al. Research on flow distribution of CO2micro channel gas cooler based on orthogonal test design[J]. Chemical Equipment and Piping, 2015, 52(2):38-43.
    [16] CELIK N, PUSAT G, TURGUT E. Application of Taguchi method and grey relational analysis on a turbulated heat exchanger[J]. International Journal of Thermal Sciences, 2018, 124:85-97.
    [17]陈宗毅,何林.基于正交试验的钎焊板式换热器优化设计[J].现代机械, 2015(1):25-27, 53.CHEN Zongyi, HE Lin. An optimal design of brazed plate heat exchanger based on orthogonal experiment[J]. Modern Machinery, 2015(1):25-27, 53.
    [18] SHIH Y, SHIAH S, LIN C, et al. Performance study of a compact heat exchanger with fin-tube core[J]. ACRA 2016—8th Asian Conference on Refrigeration and Air-Conditioning, 2016, 13(5):16-21.
    [19]古新,罗元坤,熊晓朝,等.扭转流换热器结构参数对流场和温度场的影响[J].化工学报, 2018, 69(8):3390-3397.GU Xin, LUO Yuankun, XIONG Xiaochao, et al. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field[J]. CIESC Journal, 2018, 69(8):3390-3397.
    [20]刘瑞江,张业旺,汤建,等.正交试验设计和分析方法研究[J].实验技术与管理, 2010, 27(9):52-55.LIU Ruijiang, ZHANG Yewang, WEN Chongwei, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9):52-55.
    [21]古新,董其伍,刘敏珊.周期性模型在管壳式换热器数值模拟中的应用[J].热能动力工程, 2008(1):64-68, 107-108.GU Xin, DONG Qiwu, LIU Minshan. Application of a periodic model in the numerical simulation of shell-and-tube heat exchangers[J].Journal of Engineering for Thermal Energy&Power, 2008(1):64-68,107-108.
    [22]梁忠伟,周俊辉,刘晓初,等.基于正交实验的空调换热器流场模拟及性能分析[J].广州大学学报(自然科学版), 2015, 14(6):69-77.LIANG Zhongwei, ZHOU Junhui, LIU Xiaochu, et al. Flow field simulation and performance analysis of heat exchanger in air conditioning system based on orthogonal experiment[J]. Journal of Guangzhou University(Natural Science Edition), 2015, 14(6):69-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700