用户名: 密码: 验证码:
热电器件的界面和界面材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermoelectric Device: Contact Interface and Interface Materials
  • 作者:胡晓凯 ; 张双猛 ; 赵府 ; 刘勇 ; 刘玮书
  • 英文作者:HU Xiao-Kai;ZHANG Shuang-Meng;ZHAO Fu;LIU Yong;LIU Wei-Shu;Department of Material Science and Engineering, Southern University of Science and Technology;Institute for Frontier Materials, Deakin University;Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology;AECC Beijing Institute of Aeronautical Materials;
  • 关键词:热电器件 ; 金属化层 ; 界面电阻 ; 高温稳定 ; 综述
  • 英文关键词:thermoelectric device;;metallization;;contact resistance;;high-temperature stability;;review
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:南方科技大学材料科学与工程系;迪肯大学前沿材料研究所;南方科技大学前沿与交叉科学研究院;中国航发北京航空材料研究院;
  • 出版日期:2019-03-18 11:00
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.233
  • 基金:“千人计划”-青年人才项目;; 深圳市“孔雀人才计划”;; 广东省“珠江人才计划”-创新创业团队项目(2016ZT06G587)~~
  • 语种:中文;
  • 页:WGCL201903005
  • 页数:10
  • CN:03
  • ISSN:31-1363/TQ
  • 分类号:39-48
摘要
基于塞贝克效应的热电转换技术,在大量分散的低品位废热转换电能方面有着不可替代的优势。以热电优值ZT为性能指标的热电材料研发成为新能源材料领域研究的热点之一。近年来,大量新型中温热电材料被相继发现,然而新型热电材料的产业化应用,尤其是在温差发电方面的进展尤为缓慢,其中热电器件中的材料界面问题严重制约了热电转换技术的应用进程。本文从Bi2Te3型器件在温差发电方面所遇到的技术瓶颈为例,阐述热电器件中的界面关键技术,并归纳出电极接触界面需要综合考虑低的界面电阻、高的结合强度、以及好的高温稳定性能。然后总结了与Bi2Te3、PbTe、CoSb3基三种热电材料相关的界面材料研究进展。
        Thermoelectric power generation via Seebeck effect features an unique advantage in converting large amount of distributed and low-grade waste heat into electricity. Thermoelectric materials have become a hot topic of research in the field of new energy materials, guided by the high figure of merit ZT. Although various mid-temperature thermoelectric materials were discovered, the industrial application of these materials, especially in power generation applications, progressed very slowly. The staggering interface technology associated with thermoelectric device restricted the advance of thermoelectric conversion technology. In this review, the bottleneck issues of utilizing Bi2 Te3-based devices for power generation were used as an example to illustrate the critical interface technologies. The key issues at designing electrode contact interfaces were summarized, including low contact resistance, high bonding strength, and superior thermal chemical stability at high temperature. The recent progress on the metallization and interfacial barrier layer for typical materials of Bi2 Te3, PbTe and CoSb3 were also reviewed.
引文
[1]中国建筑节能协会.中国建筑能耗研究报告(2017年),上海, 2017.
    [2]陈立东,刘睿恒,史迅.热电材料与器件.北京:科学出版社,2018:1–14.
    [3]LIU W S, HU J Z, ZHANG S M, et al. New trends, strategies and opportunitiesinthermoelectricmaterials:aperspective.Mater.Today Phys., 2017, 1:50–60.
    [4]ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high efficiencythermoelectricmaterials.Adv.Mater,2017,29(14):1605884.
    [5]LI J F, LIU W S, ZHAO L D, et al. High-performance nanostructuredthermoelectricmaterials.NPGAsiaMater.,2010,2(4):152–158.
    [6]ZEBARJADIM,ESFARJANIK,DRESSELHAUSMS, etal.Perspectivesonthermoelectrics:fromfundamentalstodevice applications. Energy Environ. Sci., 2012, 5(1):5147–5162.
    [7]CHEN L D, XIONG Z, BAI S Q. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 2010, 25(6):561–568.
    [8]ZHAN B, LAN J Z, LIU Y C, et al. Research progress of oxides thermoelectricmaterials.JournalofInorganicMaterials,2014,29(3):237–244.
    [9]CHEN G, LIU T X, TANG X F, et al. Optimization of electrode material and connecting process for Mg-Si-Sn based thermoelectric device. Journal of Inorganic Materials, 2015, 30(6):639–646.
    [10]FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy bandp-typehalf-Heuslerthermoelectricmaterials.Nat.Comm.,2015, 6:8144–8151.
    [11]HU X, JOOD P, OHTA M, et al. Power genaration of nanostructuredPbTe-basedthermoelectrics:comprehensivedevelopment frommaterialstomodules.EnergyEnviron.Sci.,2016,9(2):517–529.
    [12]KRAEMER D, JIE Q, MCENANEY K, et al. Concentrating solar thermoelectricgeneratorwithapeakefficiencyof7.4%.Nature Energy, 2016, 1:1–8.
    [13]ZHANGQ,LIAOJ,TANGY,etal.Realizingathermoelectric conversionefficiencyof12%inbismuthtelluride/skutterudite segmented modules through full-parameter optimization and energylossminimizedintegration.EnergyEnviron.Sci.,2017,10(4):956–963.
    [14]HAO F, QIU P, TANG Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100and 300℃. Energy Environ. Sci., 2016, 9(10):3120–3127.
    [15]张建中.温差电技术.天津:天津科学技术出版社,2013:131–135,219–224.
    [16]张文典.实用表面组装技术, 4版.北京:电子工业出版社, 2015:162–247.
    [17]HATZIKRANIOTIS E, ZORBAS K T, SAMARAS I, et al. Efficiencystudyofacommercialthermoelectricpowergenerator(TEG)underthermalcycling.J.Electron.Mater.,2010,39(9):2112–2116.
    [18]PARK W, BARAKO M T, MARCONNET A M, et al. Effect of thermalcyclingoncommercialthermoelectricmodules.13thIntersocietyConferenceonThermalandThermomechanicalPhenomena in Electronic Systems, San Diego, 2012, 16(12):107–112.
    [19]CLINTH,TURENNES,VASILEVSKIYD,etal.Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J. Electro. Mater., 2009, 38(7):994–1001.
    [20]KIM H S, WANG T, LIU W S, et al. Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators. Adv. Funct. Mater., 2016, 26(21):3678–3686.
    [21]LIU W S, WANG H, WANG L, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generationapplications.J.Mater.Chem.A,2013,1(42):13093–13100.
    [22]LAN Y C, WANG D Z, CHEN G, REN Z F. Diffusion of nickel and tin in p-type(Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials. Appl. Phys. Lett., 2008, 92(10):101910?1?3.
    [23]ROWEDM.CRCHandbookofThermoelectrics.USA:CRC Press LLC, 1995:479–485.
    [24]LIU W S, QING J, KIM H S, et al. Current progress and future challengesinthermoelectricpowergeneration:frommaterialsto devices. Acta Materialia, 2015, 87:357–376.
    [25]HABAV.MethodandMaterialsForObtainingLowResistance Bond to Bismuth Telluride. US Patent, 3017693, 1962. US Patent,3079455, 1963.
    [26]ROSI F D, BERNOFF R A. Method and Materials for Obtaining LowResistanceBondstoThermoelectricBodies.USPatent,3037064, 1962.
    [27]LIAO C N, LEE C H, CHEN W J. Effect of interfacial compound formation on contact resistivity of soldered junction between bismuthtelluridebasedthermoelementsandcopper.Electrochem.Solid-State Lett., 2007, 10(9):23–25.
    [28]MENGALI O J, SEILER M R. Contact resistance studies on thermoelectric materials. Adv. Energy Conversion, 1962, 2(62):59–68.
    [29]WEITZMAN L H. Etching Bismuth Telluride. US Patent, 3338765,1967.
    [30]TALOR P J, MADDUX J R, MEISSNER G, et al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett., 2013, 103(4):043902?1?4.
    [31]LIN W P, WESOLOWSKI D E, LEE C C. Barrier/bonding layers on bismuth telluride for high temperature thermoelectric modules.J. Mater. Sci.:Mater. Electron., 2011, 22(9):1313–1320.
    [32]IYORE O D. Interface Characterization of Contacts to Bulk BismuthTellurideAlloys.Richardson,TX:UniversityofTexasat Dallas, Master’s Thesis, UMI No. 1470835, 2009.
    [33]FENG H P, YU B, CHEN S, et al. Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemicalandmechanicalmethods.ElectrochimicaActa,2011,56(8):3079–3084.
    [34]IYORE O D, LEE T H, GUPTA R P, et al. Interface characterization of nickel contact to bulk bismuth telluride selenide. Surf. Interface Analysis, 2009, 41(5):440–444.
    [35]WEINSTEIN M, MLAVSKY A I. Bonding of lead telluride to pure iron electrodes. Rev. Sci. Instrum., 1962, 33(10):1119–1120.
    [36]SINGHA,BHATTACHARYAS,THINAHARANC,etal.Developmentoflowresistanceelectricalcontactsforthermoelectricdevicesbasedonn-typePbTeandp-typeTAGS-85((AgSbTe2)0.15(GeTe)0.85).J.Phys.D:Appl.Phys.,2008,42(1):015502?1?6.
    [37]LEAVITTFA,MCCOYJW,MARUDHACHALAMP,etal.Segmented Thermoelectric Module with Bonded Legs. US Patent,2012/0103381 A1, 2012.
    [38]XIAH,DRYMIOTISF,CHENCL,etal.Bondingand high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectricmoduleapplications.J.Mater.Sci.,2015,50(7):2700–2708.
    [39]XIA H, DRYMIOTIS F, CHEN C L, et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications. J. Mater. Sci., 2014, 49(4):1716–1723.
    [40]XIA H, CHEN C L, DRYMIOTIS F, et al. Interfacial reaction betweenNbfoilandn-typePbTethermoelectricmaterialsduring thermoelectric contact fabrication. J. Electro. Mater., 2014, 43(11):4064–4069.
    [41]ORIHASHIM,NODAY,CHENL,etal.Ni/n-PbTeand Ni/p-Pb0.5Sn0.5Te Joining by Plasma Activated Sintering. 17th International Conference on Thermoelectrics, Nagoya, 1998:543–546.
    [42]FERRERESXR,YAMINISA,NANCARROWM,etal.One-step bonding of Ni electrode to n-type PbTe—a step towards fabricationofthermoelectricgenerators.MaterialsandDesign,2016, 107:90–97.
    [43]LI C C, DRYMIOTIS F, LIAO L L, et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C, 2015, 3(40):10590–10596.
    [44]GARCIA-CANADAS J, POWELL A V, KALTZOGLOU A, et al.Fabricationandevaluationofaskutterudite-basedthermoelectric module for high-temperature applications. J. Electro. Mater., 2013,42(7):1369–1374.
    [45]FAN X C, GU M, SHI X, et al. Fabrication and reliability evaluationofYb0.3Co4Sb12/Mo–Ti/Mo–Cu/Nithermoelectricjoints.Ceramics International, 2015, 41(6):7590–7595.
    [46]SALVADOR J R, CHO J Y, YE Z, et al. Conversion efficiency of skutterudite-basedthermoelectricmodules.Phys.Chem.Chem.Phys., 2014, 16(24):12510–12520.
    [47]FAN J F, CHEN L D, BAI S Q, et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Materials Letters, 2004, 58(30):3876–3878.
    [48]ZHAO D G, GENG H R, TENG X Y. Fabrication and reliability evaluationofCoSb3/W-Cuthermoelectricelement.J.Alloys Compd., 2012, 517(7):198–203.
    [49]ZHAO D G, LI X Y, JIANG W, et al. Fabrication of CoSb3/Mo Cu thermoelectricjointbyone-stepSPSandevaluation.Journalof Inorganic Materials, 2009, 24(3):545–548.
    [50]GU M, XIA X G, LI X Y, et al. Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. J. Alloys Compd., 2014, 610:665–670.
    [51]TANGYS,BAISQ,RENDD,etal.Interfacestructureand electricalpropertyofYb0.3Co4Sb12/Mo-Cuelementpreparedby welding using Ag-Cu-Zn solder. Journal of Inorganic Materials,2015, 30(3):256–260.
    [52]GU M, XIA X G, HUANG X Y, BAI S Q, et al. Study on the interfacial stability of p-type Ti/CeyFexCo4–xSb12 thermoelectric joints at high temperature. J. Alloys Compd., 2016, 671:238–244.
    [53]CAILLAT T, FLEURIAL J P, SNYDER G J, et al. Development ofHighEfficiencySegmentedThermoelectricUnicouples.Proceedingsof20thInt.Conf.onThermoelectrics,Beijing,2001,504(1):282–285.
    [54]FLEURIALJP,CAILLATT,CHISC.ElectricalContactsfor SkutteruditeThermoelectricMaterials.USPatent,20120006376A1, 2012.
    [55]GUO J Q, GENG H Y, OCHI T, et al. Development of skutterudite thermoelectricmaterialsandmodules.J.Electro.Mater.,2012,41(6):1036–1042.
    [56]MUTOA,YANGJ,POUDELB,etal.Skutteruditeunicouple characterizationforenergyharvestingapplications.Adv.Energy Mater., 2013, 3(2):245–251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700