用户名: 密码: 验证码:
基于全尺寸试验台的水介质条件下高速轮轨黏着特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Adhesion Property of High Speed Wheel and Rail in Wet Condition by Full Scale Roller Rig
  • 作者:常崇义 ; 陈波 ; 蔡园武 ; 王俊彪
  • 英文作者:CHANG Chongyi;CHEN Bo;CAI Yuanwu;WANG Junbiao;Railway Science & Technology Research & Development Center,China Academy of Railway Sciences Corporation Limited;High Speed Wheel-Rail System Laboratory,China Academy of Railway Sciences Corporation Limited;
  • 关键词:轮轨关系 ; 黏着特性曲线 ; 黏着系数 ; 喷水量 ; 表面粗糙度 ; 轴重 ; 喷水温度 ; 速度
  • 英文关键词:Wheel-rail interface;;Adhesion characteristics curve;;Adhesion coefficient;;Water spray amount;;Surface roughness;;Axle load;;Water spray temperature;;Speed
  • 中文刊名:ZGTK
  • 英文刊名:China Railway Science
  • 机构:中国铁道科学研究院集团有限公司铁道科学技术研究发展中心;中国铁道科学研究院集团有限公司高速轮轨关系试验室;
  • 出版日期:2019-03-15
  • 出版单位:中国铁道科学
  • 年:2019
  • 期:v.40;No.165
  • 基金:中国铁路总公司科技研究开发课题(2016G008-C);; 中国铁道科学研究院科研开发基金资助项目(2014YJ089)
  • 语种:中文;
  • 页:ZGTK201902005
  • 页数:8
  • CN:02
  • ISSN:11-2480/U
  • 分类号:27-34
摘要
基于全尺寸高速轮轨关系试验台,模拟轮轨接触界面在水介质条件下的轮轨黏着特性,研究喷水量、轮轨接触表面粗糙度、喷水温度、轴重和运行速度对水介质条件下高速轮轨黏着系数的影响规律。结果表明:水介质条件下,喷水量、轮轨接触表面粗糙度、运行速度对轮轨黏着系数影响较大,喷水温度和轴重对其影响较小;随喷水量的增加轮轨黏着系数逐渐减小,但当喷水量达到200mL·min-1后黏着系数不再减小;随着表面粗糙度的增加,运行速度对轮轨黏着系数的影响逐渐减弱,表面粗糙度增至1.0~1.1μm时运行速度对轮轨黏着系数的影响很小;在40~200km·h-1速度范围内,轮轨黏着系数随速度的增加减小得较快,而在200~400km·h-1速度范围内减小得较为缓慢;轮轨黏着系数随喷水温度的升高而增大,喷水温度为0℃(下雪)时的轮轨黏着系数较常温时下降11%~15%;轮轨黏着系数随轴重的增加而减小,在动车组常用轴重10~16t范围内轴重对轮轨黏着系数的影响只有10%左右。
        Tests were conducted to study wheel-rail adhesion characteristics in wet condition by high speed full scale roller rig of wheel/rail interface.The influential factors on the high speed wheel-rail adhesion coefficient in wet condition were investigated,which included the water spray amount,wheel-rail contact surface roughness,water spray temperature,axle load and running speed.Test results indicate that the water spray amount,wheel-rail contact surface roughness and running speed influence relatively heavily on the adhesion coefficient in wet condition,while the water spray temperature and axle load influence it relatively lightly.The wheel-rail adhesion coefficient decreases gradually with the increase of water spray amount,but when the water spray amount reaches 200 mL·min-1,the adhesion coefficient will no longer decrease.With the increase of surface roughness,the influence of running speed on wheel-rail adhesion coefficient is gradually weakened,and becomes very small when the surface roughness increases to 1.0~1.1μm.In the speed range from 40 to 200 km·h-1,the wheel-rail adhesion coefficient decreases rapidly with the increase of speed,but decreases slowly in the speed range from 200 to 400 km·h-1.The wheel-rail adhesion coefficient increases with the increase of water spray temperature,and it is 11% ~15% lower than that at normal temperature when the water spray temperature is 0℃(snowfall temperature).The wheel-rail adhesion coefficient decreases with the increase of the axle load,and in the regular axle load range from 10 tto 16 t,the influence of the axle load on the adhesion coefficient is only about 10%.
引文
[1]CARTER F W.On the Action of a Locomotive Driving Wheel[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1926,112(760):151-157.
    [2]VERMEULEN P J,JOHNSON K L.Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces[J].Journal of Applied Mechanics,1964,31(2):338-340.
    [3]KALKER J J.On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction[D].Delft,the Netherlands:Delft University,1967.
    [4]KALKER J J.A Fast Algorithm for the Simplified Theory of Rolling Contact[J].Vehicle System Dynamics,1982,11(1):1-13.
    [5]KALKER J J.Three-Dimensional Elastic Bodies in Rolling Contact[M].Dordrecht,the Netherlands:Kluwer Academic Publishers,1990.
    [6]NACKENHORST U.Zur Berechnung Schnell Rollender Reifen mit der Finite Element Methode[D].Hamburg:Universitt der Bundeswehr Hamburg,1992.
    [7]DAMME S,NACKENHORST U,WETZEL A,et al.On the Numerical Analysis of the Wheel-Rail System in Rolling Contact[C]//System Dynamics and Long-Term Behavior of Railway Vehicles,Rack and Subgrade.Berlin:Springer,2003.
    [8]常崇义,王成国.基于ALE有限元的轮轨稳态滚动接触分析[J].中国铁道科学,2009,30(2):87-93.(CHANG Chongyi,WANG Chengguo.Wheel-Rail Steady State Rolling Contact Analysis Based on ALE Finite Element Method[J].China Railway Science,2009,30(2):87-93.in Chinese)
    [9]CHEN H,YOSHIMURA A,OHYAMA T.Numerical Analysis for the Influence of Water Film on Adhesion Between Rail and Wheel[J].Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,1998,212(5):359-368.
    [10]CHEN H,BAN T,ISHIDA M,et al.Adhesion between Rail/Wheel under Water Lubricated Contact[J].Wear,2002,253(1):75-81.
    [11]CHEN H,NAMURA A,ISHIDA M.Effect of Axle Load on Adhesion Coefficient between Wheel and Rail under Wet Conditions[J].RTRI Report,2010,24(4):27-32.
    [12]吴兵,温泽峰,王衡禹,等.高速轮轨水介质接触数值分析方法[J].交通运输工程学报,2012,12(6):41-47.(WU Bing,WEN Zenfeng,WANG Hengyu,et al.Numerical Analysis Method of Wheel/Rail Adhesion under Water Lubrication for High-Speed Railway[J].Journal of Traffic and Transportation Engineering,2012,12(6):41-47.in Chinese)
    [13]KUMAR S,钱立新.轮轨接触参数的实验室模拟及轮轨冲角、蛇行运动、油水污染、真实接触面积对粘着-蠕滑性能的影响[J].中国铁道科学,1984,5(1):12-35.(KUMAR S,QIAN Lixin.Laboratory Simulation of Wheel and Rail Contact Related Parameters and Influence of Contact Area,Angles of Attack,Kinematic Oscillation and Water,Oil Contamination on Wheel Rail Adhesion[J].China Railway Science,1984,5(1):12-35.in Chinese)
    [14]OHYAMA T.Fundamental Adhesion Phenomena between Wheel and Rail at High Speeds,Some Experiments with a High Speed Rolling Test Machine under Water[J].Quarterly Report of RTRI,1985,26(4):135-140.
    [15]OHYAMA T.Adhesion at High Speeds-Its Characteristics,Its Improvement and Some Related Problems[J].Japanese Railway Engineering,1989(100):19-23.
    [16]OHYAMA T.Some Basic Studied on the Influence of Surface Contamination on Adhesion Force between Wheel and Rail High Speeds[J].Quarterly Report of RTRI,1989,30(3):127-135.
    [17]OHYAMA T.Adhesion Characteristics of Wheel/Rail System and Its Control at High Speeds[J].Quarterly Report of RTRI,1992,33(1):9.
    [18]蔡园武,常崇义,陈波,等.基于ALE方法的高速轮轨黏着特性仿真及试验验证[J].中国铁道科学,2018,39(5):33-41.(CAI Yuanwu,CHANG Chongyi,CHEN Bo,et al.Simulation and Experimental Validation of High Speed WheelRail Adhesion Characteristics Based on ALE Method[J].China Railway Science,2018,39(5):33-41.in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700