用户名: 密码: 验证码:
落石冲击作用下钢-混凝土组合梁上砂垫层的耗能性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy dissipation performance of a sand cushion on steel-concrete composite beam under the impact load of rockfall
  • 作者:罗杰 ; 肖建春 ; 马克俭 ; 毛家意 ; 张弘
  • 英文作者:LUO Jie;XIAO Jianchun;MA Kejian;MAO Jiayi;ZHANG Hong;Space Structure Research Center, Guizhou University;China Construction fourth Engineering Bureau Sixth Co., Ltd.;Key Laboratory of Structural Engineering of Guizhou Province;Guiyang City People's Air Defense Office;Guizhou Construction and Engineering Group Sixth Co., Ltd.;
  • 关键词:钢-混凝土组合梁 ; 级配砂垫层 ; 冲击 ; 耗能 ; SPH-FEM
  • 英文关键词:steel-concrete composite beam;;sand cushion;;impact;;dissipated energy;;smoothed particle hydrodynamics-finite element method(SPH-FEM)
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:贵州大学空间结构研究中心;中建四局第六建筑工程有限公司;贵州省结构工程重点实验室;贵阳市人民防空办公室;贵州建工集团第六建筑工程有限责任公司;
  • 出版日期:2019-03-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.338
  • 基金:国家自然科学基金(50978064);; 贵州省自然科学基金(黔科合基础[2017]1054-1036);贵州省自然科学基金(黔人防2017-01);; 贵州省科技支撑计划(黔科合支撑[2018]2953);; 中建四局科研课题(CSCEC4B-2018-KT-13)
  • 语种:中文;
  • 页:ZDCJ201906038
  • 页数:8
  • CN:06
  • ISSN:31-1316/TU
  • 分类号:254-261
摘要
为了研究落石冲击作用下钢-混凝土组合梁上覆盖砂垫层的耗能性能,进行了6根梁的模型试验和25根梁的SPH-FEM分析。试验选取混凝土圆台的落体冲击能和级配中砂垫层的厚度作为研究参数。对SPH-FEM计算结果进行统计,得到这类组合梁的冲击能量耗散与落体冲击能、垫层厚度之间的关系式。研究表明,在垫层厚度适中的情况下,垫层能量耗散效率随着落体冲击能的增大而提高。级配砂垫层厚度为1/20~1/10的梁跨度时,可以明显减小钢筋混凝土面板的最大裂缝宽度和组合梁的最大挠度。当砂土垫层厚度相同(组合梁跨度的1/40~1/8),砂土耗能与落体冲击冲击能成正相关。当落体冲击能相同时,砂土垫层耗能与砂土垫层厚度(组合梁跨度的1/40~1/8)成正相关。落体冲击能、砂土垫层厚度相互作用时对砂土垫层的能量耗散效率的影响最大。通过回归统计得到的公式可以通过不同厚度的砂土垫层和落体冲击能计算出砂土消耗的能量。
        In order to study the energy dissipation performance of a sand cushion on steel-concrete beam under the impact load of rockfall, six model experiments and twenty-five SPH-FEM analyses were carried out. The impact energy of the concrete frustum and the thickness of the sand cushion were selected as objective parameters. The relationships of the dissipation energy with the impact energy of the heavy weight, and the thickness of the sand cushion were obtained by SPH-FEM analyses. The study shows the energy dissipation efficiency of the sand cushion increases with the increase of impact energy of the heavy weight when the cushion thickness is moderate. The maximum crack width of the concrete surface slab and the maximum deflection of the steel-concrete composite beam can be reduced obviously when the thickness of the sand cushion is 1/20 to 1/10 of the beam span. The energy dissipated by the sand cushion is directly proportional to the impact energy of the heavy weight when the thickness of the sand cushion keeps constant(1/40—1/8 of the beam span). The energy dissipated by the sand cushion is proportional to its thickness(1/40—1/8 of the beam span) when the impact energy is unchanged. The energy dissipated by the sand cushion is largest when the impact energy and the thickness of the sand cushion interact together.
引文
[1]TAM S H,HIROSHI M,NAOTA T.Experimental study concerning impact characteristics by collision of weight on sand cushion over steel beam[J].International Journal of GEOMATE,2013,4(1):471-476.
    [2]KISHI N,OKADA S,KONNO H,et al.Numerical study on modeling of sand element for impact response analysis[J].Journal of Structure Engineering,2003,49:1323-1332.
    [3]何思明,吴永.新型耗能减震滚石棚洞作用机制研究[J].岩石力学与工程学报,2010,29(5):926-932.HE Siming,WU Yong.Research on cushioning mechanism of new-typed energy dissipative rock shed[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(5):926-932.
    [4]王新武,李砚召.带覆土预应力混凝土梁抗冲击试验[J].华中科技大学学报(自然科学版),2008,36(9):113-116.WANG Xinwu,LI Yanzhao.Experimental study on antiimpact properties of a partially prestressed concrete beam with covering soil[J].Journal of Huazhong University of Science and Technology(Natural Science),2008,36(9):113-116.
    [5]BHATTI A Q,KISHI N.Impact response of RC rock-shed girder with sand cushion under falling load[J].Nuclear Engineering and Design,2010,240(10):2626-2632.
    [6]裴向军,刘洋,王东坡.滚石冲击棚洞砂土垫层耗能缓冲机理研究[J].四川大学学报(工程科学版),2016,48(1):15-22.PEI Xiangjun,LIU Yang,WANG Dongpo.Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load[J].Journal of Sichuan University(Engineering Science),2016,48(1):15-22.
    [7]MICHEL Y,CHEVALIER J M,DURIN C,et al.Hypervelocity impacts on thin brittle targets:experimental data and SPH simulations[J].International Journal of Impact Engineering,2006,33(1/12):441-451.
    [8]司鹄,薛永志.基于SPH算法的脉冲射流破岩应力波效应数值分析[J].振动与冲击,2016,35(5):146-152.SI Hu,XUE Yongzhi.Numerical analysis for stress wave effects of rock broken under pulse jets[J].Journal of Vibration and Shock,2016,35(5):146-152.
    [9]罗杰,肖建春,马克俭,等.半球壳冲击土壤的SPH-FEM耦合分析方法[J].振动与冲击,2017,36(17):195-199.LUO Jie,XIAO Jianchun,MA Kejian,et al.Coupled SPH-FEM method for analyzing hemispherical shell impact on soil[J].Journal of Vibration and Shock,2017,36(17):195-199.
    [10]MAEDA K,SAKAI M.Development of seepage failure analysis procedure of granular ground with smoothed particle hydrodynamics(SPH)method[J].Structural Engineering/Earthquake Engineering,2006,23(2):775-786.
    [11]黄雨,郝亮,野々山泶人.SPH方法在岩土工程中的研究应用进展[J].岩土工程学报,2008,30(2):256-262.HUANG Yu,HAO Liang,HIDETO Nonoyama.The state of the art of SPH method applied in geotechnical engineering[J].Chinese Journal of Geotechnical Engineering,2008,30(2):256-262.
    [12]张志春,强洪夫,高巍然.一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用[J].爆炸与冲击,2011,31(3):243-249.ZHANG Zhichun,QIANG Hongfu,GAO Weiran.A new coupled SPH-FEM algorithm and its application to impact dynamics[J].Explosion and Shock Waves,2011,31(3):243-249.
    [13]Livemore Software Technology Corporation,Inc.LS-DYNAkeyword user’s manual volumeⅡ(material models,version971/Rev 5)[Z].California:Livemore Software Technology Corporation,Inc.,2010.
    [14]REESE L,QIU T,LINZELL D,et al.Field-scale testing and numerical investigation of soil-boulder interaction under vehicular impact using FEM and coupled FEM-SPHformulations[J].International Journal of Protective Structures,2016,6(1):1-23.
    [15]ADDISS J,COLLINS A,BOBARU F,et al.Dynamic behaviour of granular materials at impact[C]∥In:DYMAT2009-9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading.Brussels:DYMAT,2009.
    [16]QURESHI J,LAM D,YE J Q.Effect of shear connector spacing and layout on the shear connector capacity in composite beams[J].Journal of Constructional Steel Research,2011,67(4):706-719.
    [17]铁道第二勘测设计院.铁路工程设计技术手册-隧道[M].北京:中国铁道出版社,1999.
    [18]中华人民共和国行业标准.公路路基设计规范:JTGD30-2004,[S].北京:人民交通出版社,2005.
    [19]KAWAHA S,MURO T.Effects of dry density and thickness of sandy soil on impact response due to rockfall[J].Journal of Terramechanics,2006,43(3):329-340.
    [20]LABIOUSE V,DESCOEUDRES F,MONTANI S.Experimental study of rock sheds impacted by rock blocks[J].Structural Engineering International,1966,6(3):171-175.
    [21]PICHLER B,HELLMICH C,MANG H A.Impact of rocks on to gravel design and evaluation of experiments[J].International Journal of Impact Engineering,2005,31(5):559-578.
    [22]杨其新,关宝树.落石冲击力计算方法试验研究[J].铁道学报,1996,18(1):102-106.YANG Qixin,GUAN Baoshu.Test and research on calculating method of falling stone impulsive force[J].Journal of the China Railway Society,1996,18(1):102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700