用户名: 密码: 验证码:
热力学碳泵:角色、模型与案例分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamic carbon pump: role, modeling and case study
  • 作者:周杨洲 ; 李双俊 ; 邓帅 ; 赵力
  • 英文作者:ZHOU Yang-zhou;LI Shuang-jun;DENG Shuai;ZHAO Li;Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education of China, Tianjin University;
  • 关键词:热力学 ; 碳泵 ; 碳捕集 ; 能效
  • 英文关键词:thermodynamics;;carbon pump;;carbon capture;;energy-efficient
  • 中文刊名:RKXS
  • 英文刊名:Journal of Thermal Science and Technology
  • 机构:天津大学中低温热能高效利用教育部重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:热科学与技术
  • 年:2019
  • 期:v.18
  • 基金:国家自然科学基金资助项目(51876134);; 天津市人才发展特殊支持计划高层次创新创业团队资助项目
  • 语种:中文;
  • 页:RKXS201901012
  • 页数:7
  • CN:01
  • ISSN:21-1472/T
  • 分类号:83-89
摘要
制约碳捕集技术发展的瓶颈之一在于能耗过高,而现有碳捕集能效分析的方法论与适用模型并未从能源转换的共性机制层面揭示碳捕集理论能耗的"天花板"。因此,也较难像热力学经典概念热机、热泵及其衍生研究框架一样,从"理想与现实之间的不可逆性"这一思考原点出发,探索节能降耗的新机制与新途径。从碳捕集中能源转换的普遍特性出发,提出了热力学碳泵这一概念,首先对其在既有碳捕集研究体系中的辅助角色进行了论述,其后建立了基于热力学观点的模型并展开案例分析,最后与既有混合气体分离模型进行了异同讨论,阐述了两者的互补性。对热力学在面向新型工业应用情景下的能效分析进行了可供参考的尝试。
        The main barrier to the development of carbon capture is the high-level energy consumption, while the existing methodology and related modeling on energy-efficient analysis of carbon capture could not demonstrate the top-ceiling performance of ideal energy-consumption in aspect of generalized mechanism of energy conversion. Thus, it near impossible to clearly explore the innovative mechanism and pathway of energy-saving and efficient, originating from the consideration on "irreversibility between idea and real status", like the growing development of classical concepts of heat engine and heat pump, relevant research framework in the field of thermodynamic. Based on the generalized characteristics of energy conversion in carbon capture, thermodynamics carbon pump is proposed as a concept. The assistant role of such concept inside the exiting research framework is presented, than thermodynamics modeling is conducted as well as case studies, finally a comparative analysis between proposed model and separation model of mixture gas is discussed for complementarity. Such work could be considered as a helpful reference on how to apply thermodynamic to serve the energy-efficient analysis for the new application scenario of developing industrial section.
引文
[1] Global CCS Institute. The global status of CCS—2017 summary report [EB/OL]. (2017-08-25). http://status.globalccsinstitute.com.
    [2] Global CCS Institute. The global status of CCS—2016 summary report [EB/OL]. (2016-08-14). http://status.globalccsinstitute.com.
    [3] 张敏思,张昕. 对《全国碳排放权交易市场建设方案(发电行业)》的分析 [J]. 中国经贸导刊, 2018(6): 71-72. ZHANG Min-si, ZHANG Xin. Analysis of the national carbon emissions trading market construction plan (power generation industry) [J]. China Economic and Trade Guide, 2018(6): 71-72. (in Chinese)
    [4] GOTO K, YOGO K, HIGASHII T. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture [J]. Applied Energy, 2013, 111(11): 710-720.
    [5] HE J, LIU Y, MA Z, et al. A literature research on the performance evaluation of hydrate-based CO2 capture and separation process [J]. Energy Procedia, 2017, 105: 4090-4097.
    [6] DENG S, ZHAO R, LIU Y, et al. Carbon pump: A reinterpretation model for energy efficiency of CO2 capture [C]. 14th International Conference on Sustainable Energy Technologies, 25-27, August ,2015, Nottingham UK. Nottingham: SET, 2015.
    [7] 陈林根,孙丰瑞. 热力学优化理论的研究进展 [J]. 武汉工程大学学报, 2002, 24(1): 81-85. CHEN Lin-gen, SUN Feng-rui. Research progress in thermodynamic optimization theory [J]. Journal of Wuhan University of Technology, 2002, 24(1): 81-85. (in Chinese)
    [8] ZHAO R, DENG S, LIU Y, et al. Carbon pump: Fundamental theory and applications [J]. Energy, 2017, 119: 1131-1143.
    [9] 赵睿恺,邓帅,赵力,等. 热力学碳泵循环构建:以变温吸附碳捕集为例 [J]. 工程热物理学报, 2017, 38(7): 1531-1538. ZHAO Rui-kai, DENG Shuai, ZHAO Li, et al. Construction of thermodynamic carbon pump cycle: a case study of variable temperature adsorption carbon capture [J]. Journal of Engineering Thermophysics, 2017, 38(7): 1531-1538. (in Chinese)
    [10] LIU Y, DENG S, ZHAO R, et al. Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts [J]. Renewable and Sustainable Energy Reviews, 2017, 77: 652-669.
    [11] 高执隶. 化学热力学基础 [M]. 北京:北京大学出版社, 2006.
    [12] 王永珍. 高等工程热力学 [M]. 北京:清华大学出版社, 2013.
    [13] 李俊,陈林根,戈延林,等. 正、反向两源热力循环有限时间热力学性能优化的研究进展 [J]. 物理学报, 2013, 62(13): 1-12. LI Jun, CHEN Lin-gen, GE Yan-lin, et al. Research progress on finite-time thermodynamic performance optimization of positive and negative two-source thermodynamic cycles [J]. Acta Physica Sinica, 2013, 62(13): 1-12. (in Chinese)
    [14] WILCOX J. Carbon Capture [M]. New York: Springer, 2012.
    [15] HOUSE K Z, HARVEY C F, AZIZ M J, et al. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U. S. installed base [J]. Energy & Environmental Science, 2009, 2(2): 193.
    [16] 陈林根,孙丰瑞,陈文振,等. 热机有限时间热力学: 理论和应用 [J]. 热能动力工程, 1989, 4(2): 7-14,54. CHEN Lin-gen, SUN Feng-rui, CHEN Wen-zhen, et al. Thermodynamics finite time thermodynamics: theory and application [J]. Thermal Power Engineering, 1989, 4(2): 7-14,54. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700