用户名: 密码: 验证码:
海流干扰下的欠驱动AUV三维路径跟踪控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control for 3D path-following of underactuated autonomous underwater vehicle under current disturbance
  • 作者:姚绪梁 ; 王晓伟 ; 蒋晓刚 ; 王峰
  • 英文作者:YAO Xuliang;WANG Xiaowei;JIANG Xiaogang;WANG Feng;College of Automation, Harbin Engineering University;College of Mechanical Engineering, Jiujiang Vocational and Technical College;
  • 关键词:自主水下航行器 ; 路径跟踪 ; 滑模控制 ; Serret-Frenet坐标系 ; 积分视线法
  • 英文关键词:AUV;;path-following;;sliding mode control;;Serret-Frenet frame;;ILOS
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:哈尔滨工程大学自动化学院;九江职业技术学院机械工程学院;
  • 出版日期:2019-03-12 16:29
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(51279039)
  • 语种:中文;
  • 页:HEBX201903005
  • 页数:9
  • CN:03
  • ISSN:23-1235/T
  • 分类号:43-51
摘要
为解决存在海流干扰和模型不确定性情况下欠驱动自主水下航行器(AUV)的三维路径跟踪控制问题,首先在Serret-Frenet坐标系下,基于虚拟向导建立了跟踪误差模型.然后,在运动学控制器中基于李雅普诺夫(Lyapunov)理论和反步法设计具有自适应律的虚拟向导和一种改进的积分视线法(ILOS)导引律,克服了海流的干扰并减少了超调.应用反步自适应滑模控制(BASMC)理论设计动力学控制器,保证了系统的稳定性和鲁棒性.最后,应用非线性级联理论证明了整个控制系统的闭环稳定性.仿真结果表明:基于AUV与流体的相对速度来实现的控制律,便于工程应用.该控制器能够有效克服海流和模型不确定的影响,实现对三维路径的跟踪.
        To deal with the 3 D path-following control problem of underactuated autonomous underwater vehicle(AUV) in the presence of current disturbance and model uncertainty, a tracking error model on the basis of virtual target in Serret-Frenet frame was established. Based on the Lyapunov theory and back-stepping method in kinematic controller, the virtual target with adaptive law and an improved integral line-of-sight(ILOS) guidance law were then developed, which can overcome the interference of current and reduce overshoot. Dynamic controller was designed based on the back-stepping adaptive sliding mode control(BASMC) theory, which guarantees the stability and robustness of the system. Finally, the closed loop stability of the system was demonstrated by the nonlinear cascade system theory. The simulation results demonstrate that the control law, which is implemented based on the relative velocity between AUV and fluid, is convenient for engineering application, and the controller can effectively overcome the influence of current and model uncertainty and realize 3 D path-following.
引文
[1] 王芳,万磊,李晔,等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227 WANG Fang, WAN Lei, LI Ye, et al. A survey on development of motion control for underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227
    [2]LEKKAS A M, FOSSEN T I. A time-varying lookahead distance guidance law for path following[J]. IFAC Proceedings Volumes, 2012, 45(27): 398
    [3] XU H, SOARES C G. Vector field path following for surface marine vessel and parameter identification based on LS-SVM[J]. Ocean Engineering, 2016, 113: 151
    [4] LAPIERRE L, SOETANTO D. Nonlinear path-following control of an AUV[J]. Ocean Engineering, 2007, 34(11): 1734
    [5] CAHARIJA W, PETTERSEN K Y, BIBULI M, et al. Integral line-of-sight guidance and control of underactuated marine vehicles: theory, simulations, and experiments[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1623
    [6] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 820
    [7] CAHARIJA W, PETTERSEN K Y, S?RENSEN A J, et al. Relative velocity control and integral line of sight for path following of autonomous surface vessels: merging intuition with theory[J]. Proceedings of the Institution of Mechanical Engineers, 2014, 228(2): 180
    [8] 李岳明, 万磊, 孙玉山, 等. 水下机器人高度信息融合与欠驱动地形跟踪控制[J].控制理论与应用, 2013, 30(1): 118 LI Yueming, WAN Lei, SUN Yushan, et al. Altitude information fusion and bottom-following control for underactuated autonomous underwater vehicle[J]. Control Theory & Applications, 2013, 30(1):118
    [9] FOSSEN T I, LEKKAS A M. Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents[J]. International Journal of Adaptive Control and Signal Processing, 2017, 31(4): 445
    [10]边信黔, 程相勤, 贾鹤鸣, 等. 基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制 [J]. 控制与决策, 2011, 26(2): 289 BIAN Xinqian, CHENG Xiangqin, JIA Heming, et al. A bottom-following controller for underactuated AUV based on iterative sliding and increment feedback[J]. Control and Decision, 2011, 26(2): 289
    [11]LI Ye, WEI Cong, WU Qi, et al. Study of 3 dimension trajectory tracking of underactuated autonomous underwater vehicle[J]. Ocean Engineering, 2015, 105: 270
    [12]葛晖, 敬忠良, 高剑. 自主式水下航行器三维路径跟踪的神经网络H∞鲁棒自适应控制方法[J].控制理论与应用, 2012, 29(3): 317 GE Hui, JING Zhongliang, GAO Jian. Neural network H-infinity robust adaptive control for autonomous underwater vehicle in 3-dimensional path following[J]. Control Theory & Applications, 2012, 29(3): 317
    [13]王宏健, 陈子印, 贾鹤鸣, 等. 基于滤波反步法的欠驱动AUV三维路径跟踪控制[J].自动化学报, 2015, 41(3): 631 WANG Hongjian, CHEN Ziyin, JIA Heming, et al. Three-dimensional path-following control of underactuated autonomous underwater vehicle with command filtered back-stepping[J]. Acta Automatica Sinica, 2015, 41(3): 631
    [14]李娟, 边信黔, 熊华胜,等.AUV的精确航迹跟踪系统的鲁棒控制[J].哈尔滨工业大学学报,2013,45(1):112 LI Juan, BIAN Xinqian, XIONG Huasheng, et al. Robust control research for AUV trajectory control system[J]. Journal of Harbin Institute of Technology, 2013, 45(1): 112
    [15]PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. Cambridge: Massachusetts Institute of Technology, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700