用户名: 密码: 验证码:
主蒸汽温度和压力波动对汽轮机转子蠕变疲劳损伤的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Main Steam Temperature and Pressure Fluctuations on the Creep-Fatigue Damage of a Steam Turbine Rotor
  • 作者:赵乃龙 ; 王炜哲 ; 刘应征
  • 英文作者:ZHAO Nailong;WANG Weizhe;LIU Yingzheng;Key Laboratory for Power Machinery and Engineering of Ministry of Education,Gas Turbine Research Institute, Shanghai Jiao Tong University;
  • 关键词:汽轮机 ; 温度 ; 压力 ; 波动 ; 高压转子 ; 蠕变疲劳损伤
  • 英文关键词:steam turbine;;temperature;;pressure;;fluctuations;;high-pressure rotor;;creep-fatigue damage
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:上海交通大学动力机械与工程教育部重点实验室燃气轮机研究院;
  • 出版日期:2019-02-28
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.396
  • 语种:中文;
  • 页:SHJT201902001
  • 页数:7
  • CN:02
  • ISSN:31-1466/U
  • 分类号:5-11
摘要
采用Abaqus有限元软件建立了某GW(百万千瓦)级超超临界汽轮机高压转子的轴对称有限元模型,加载基于电厂实际运行的主蒸汽温度和压力的边界条件,以分析转子在稳态运行过程中的力学行为;采用Lemaitre连续损伤力学模型分析高压转子在实际运行过程中的蠕变疲劳损伤,并与不考虑主蒸汽温度和压力波动条件下的计算结果进行对比.结果表明:主蒸汽温度和压力的波动对转子的热力状态产生影响;转子的温度和应力随着主蒸汽温度和压力的波动而变化;在转子进汽口位置(A点),主蒸汽温度和压力波动下的蠕变疲劳损伤值超过主蒸汽温度和压力恒定条件下的2倍.
        The finite element software Abaqus is adopted to construct an axisymmetric finite element model of a high-pressure rotor of a 1 000 MW ultra-super critical steam turbine. The boundary conditions are determined based on the in-service steam temperature and pressure data from the power plant. After finite element calculation, the rotor mechanical behavior in the steady operation is analyzed, and the Lemaitre continuum damage model is further applied to study the creep-fatigue damage of the rotor. In addition, the calculating results without consideration of the steam temperature and pressure fluctuations are used for comparison. The results show that the fluctuations of the steam temperature and pressure exert a great influence on the thermo-mechanical behavior of the rotor; the temperature and stress of the rotor keep changing with the steam temperature and pressure; the creep-fatigue damage in the inlet area under the in-service conditions is more than double that under constant steam temperature and pressure conditions.
引文
[1]陈鹏.大型汽轮机启停过程优化和寿命管理研究[D].北京:华北电力大学, 2009. CHEN Peng. Optimization in startup and shutdown process of large turbine and research on life[D]. Beijing:North China Electric Power University, 2009.
    [2]丁阳俊.汽轮机启动过程优化研究[D].杭州:浙江大学, 2013. DING Yangjun. Optimization of start-up process in steam turbine[D]. Hangzhou:Zhejiang University, 2013.
    [3]孙永健.大型汽轮机转子低周疲劳损伤评估问题研究[D].上海:上海交通大学, 2014. SUN Yongjian. On assessment of low cycle fatigue damage of large steam turbine rotor[D]. Shanghai:Shanghai Jiao Tong University, 2014.
    [4]张梦可.反动式汽轮机转子热应力分析及寿命管理软件的设计[D].杭州:浙江大学, 2015. ZHANG Mengke. The thermal stress analysis of reactionary steam turbine rotor and design of life management software[D]. Hangzhou:Zhejiang University, 2015.
    [5]荆建平,孟光.汽轮机转子疲劳-蠕变损伤的非线性损伤力学分析[J].中国电机工程学报, 2003, 23(9):167-172. JING Jianping, MENG Guang. Nonlinear damage mechanics analysis of steam turbine rotor creep-fatigue damage[J]. Proceedings of the CSEE, 2003, 23(9):167-172.
    [6]王坤,黄树红,黄丕维,等.基于有限元技术的大型汽轮机转子寿命评估系统[J].热能动力工程, 2007, 22(3):241-244. WANG Kun, HUANG Shuhong, HUANG Piwei, et al. A rotor service-life evaluation system for large-sized steam turbines based on finite element technology[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(3):241-244.
    [7]邬文睿.超超临界汽轮机转子高温强度研究[D].上海:上海交通大学, 2009. WU Wenrui. Strength study on super-ultra critical steam-turbine rotor under high temperature[D]. Shanghai:Shanghai Jiao Tong University, 2009.
    [8]韩炜. 1 000 MW超超临界汽轮机转子寿命研究[D].北京:华北电力大学, 2013. HAN Wei. Low-cycle fatigue and high-temperature creep lifetime investigation of a 1 000 MW steam turbine rotor[D]. Beijing:North China Electric Power University, 2013.
    [9]KEBADZE B V, SROELOV V S, KUL′PIN B V, et al. Statistical characteristics of the temperature fluctuations in a direct-flow sodium—Water steam generator[J]. Atomic Energy, 1975, 39(4):870-873.
    [10]SAMAL M K, DUTTA B K, GUIN S, et al. A finite element program for on-line life assessment of critical plant components[J]. Engineering Failure Analysis, 2009, 16(1):85-111.
    [11]KWON O, MYERS M, KARSTENSEN A D, et al. The effect of the steam temperature fluctuations during steady state operation on the remnant life of the superheater header[J]. International Journal of Pressure Vessels and Piping, 2006, 83(5):349-358.
    [12]史进渊,杨宇,邓志成,等.超临界和超超临界汽轮机汽缸传热系数的研究[J].动力工程, 2006, 26(1):1-5. SHI Jinyuan, YANG Yu, DENG Zhicheng, et al. Casing’s heat transfer coefficients of supercritical and ultra-supercritical steam turbines[J]. Journal of Power Engineering, 2006, 26(1):1-5.
    [13]史进渊,杨宇,邓志成,等.超临界和超超临界汽轮机转子叶根槽传热系数的计算[J].动力工程学报, 2010, 30(7):478-484. SHI Jinyuan, YANG Yu, DENG Zhicheng, et al. Calculation of heat transfer coefficients of blade grooves for supercritical and ultra-supercritical steam turbine rotors[J]. Journal of Chinese Society of Power Engineering, 2010, 30(7):478-484.
    [14]WANG W Z. Analysis of multi-axial creep-fatigue damage on an outer cylinder of a 1 000 MW supercritical steam turbine[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(11):112504.
    [15]RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters[EB/OL].(1996-09-01)[2017-07-01]. https://ntrs.nasa.gov/search.jsp?R=19930081614.
    [16]NORTON F H. The creep of steel at high temperatures[M]. New York:McGraw-Hill Book Company, 1929.
    [17]MAO J F, WANG W Z, LIU Y Z, et al. Multiaxial creep-fatigue life prediction on the rotor of a 1 000 MW supercritical steam turbine[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. Copenhagen, Denmark:American Society of Mechanical Engineers, 2012:277-283.
    [18]LEMAITRE J, PLUMTREE A. Application of damage concepts to predict creep-fatigue failures[J]. Journal of Engineering Materials and Technology, 1979, 101(3):284-292.
    [19]LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1):83-89.
    [20]ZHAO N L, WANG W Z, ZHANG J H, et al. Numerical investigation on life improvement of low-cycle fatigue for an ultra-supercritical steam turbine rotor[J]. Journal of Mechanical Science and Technology, 2016, 30(4):1747-1754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700