用户名: 密码: 验证码:
华北土石山区7种优势乔木树种耗水分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water consumption analysis on seven dominant arbor tree species in earth and rock mountains in northern China
  • 作者:杨良辰 ; 张健强 ; 杨新兵 ; 丁杰
  • 英文作者:YANG Liangchen;ZHANG Jianqiang;YANG Xinbing;DING Jie;Shexian Vocational and Technical Education Center;Handan Forestry Bureau;Hebei Province Key Laboratory of Forest Germplasm Resources and Forest Protection, College of Forestry, Hebei Agricultural University;
  • 关键词:乔木树种 ; 优势树种筛选 ; 生态水源涵养林 ; 蒸腾耗水规律 ; 环境影响因子 ; 华北土石山区
  • 英文关键词:Arbor tree species;;screening of dominant tree species;;eco-water conservation forest;;law of transpiration and water consumption;;environmental impact factors;;earth and rock mountains in north China
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:涉县职业技术教育中心;邯郸市林业局;河北农业大学林学院河北省林木种质资源与森林保护重点实验室;
  • 出版日期:2019-01-22 13:39
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.213
  • 基金:河北省地方行业标准“森林健康评价与经营技术规程”(FW201663);; 河北省林业厅科技项目“冀北山区森林生态系统健康评价技术研究”(1403451);; 国家林业公益性行业科研专项子课题“冀北山区典型森林生态系统健康经营技术研究与示范”(200804022F)
  • 语种:中文;
  • 页:ZNLB201903012
  • 页数:7
  • CN:03
  • ISSN:43-1470/S
  • 分类号:74-80
摘要
为了给建立生态水源涵养林筛选抗旱节水的优势树种及植被营建合理规划提供科学的理论依据,采用盆栽称重法对7种乔木树种蒸腾耗水规律及环境因子影响等进行试验。结果表明:1)油松、元宝枫T_r日变化为双峰曲线,侧柏、栓皮栎、槲树、刺槐、盐肤木为单峰曲线,峰值出现在9:00—11:00或13:00—15:00;T_r日均值从大到小排序为:栓皮栎(4.40 mmol?m~(-2)s~(-1))>盐肤木(3.42 mmol?m~(-2)s~(-1))>槲树(3.13 mmol?m~(-2)s~(-1))>刺槐(1.95 mmol?m~(-2)s~(-1))>元宝枫(1.84 mmol?m~(-2)s~(-1))>油松(1.79 mmol?m~(-2)s~(-1))>侧柏(1.76 mmol?m~(-2)s~(-1)),阔叶乔木T_r日均值高于针叶乔木的。2)R_(WUE)主要表现为"V"型趋势,9:00—11:00出现最小值,油松、侧柏的抗旱性强于刺槐、元宝枫、栓皮栎、槲树、盐肤木。3)不同天气耗水量从大到小排序为:晴天>半晴天>阴天,7月、8月、9月的耗水量多于5月、6月、10月;不同树种耗水量ATWCA序为元宝枫(0.120 g·cm~(-2)d~(-1))>盐肤木(0.115 g·cm~(-2)d~(-1))>栓皮栎(0.098 g·cm~(-2)d~(-1))>槲树(0.090 g·cm~(-2)d~(-1))>油松(0.061 g·cm~(-2)d~(-1))>刺槐(0.053 g·cm~(-2)d~(-1))>侧柏(0.039 g·cm~(-2)d~(-1));表明阔叶乔木耗水量多于针叶乔木。4)影响树种叶片蒸腾速率的影响因子主要是光合有效辐射和气孔阻力。
        In order to provide scientific theoretical basis for establishing the ecological water resources conservation forest and for planning the reasonable vegetation configuration,rules of transpiration water consumption and effects of environmental factors of 7arbor tree species were investigated and studied were tested by pot weighing method.The findings are as follows:The T_r daily variation of Pinus tabulaeformis and Acer truncatum were the bimodal curve.The T_r daily variation of Platycladus orientalis,Quercus variabilis,Quercus dentata,Robinia pseudoacacia,Rhus chinensis were unimodal curve.The peak values of these tree species appeared in 9:00—11:00 or 13:00—15:00;The daily average of Tr was sorted from large to small as follows:Q.variabilis(4.40 mmol·m~(-2)s~(-1))>R.chinensis(3.42 mmol·m~(-2)s~(-1))>Q.dentata(3.13 mmol·m~(-2)s~(-1))>R.pseudoacacia(1.95 mmol·m~(-2)s~(-1))>A.truncatum(1.84 mmol·m~(-2)s~(-1))>P.tabulaeformis(1.79 mmol·m~(-2)s~(-1))>P.orientalis(1.76 mmol·m~(-2)s~(-1));It shows that the daily mean T_r of broad-leaved trees was higher than those of coniferous trees.2)The daily variation of R_(WUE) was mainly characterized by"V"trend,and the minimum value of R_(WUE )appeared in 9:00—11:00;The drought resistance of P.tabulaeformis and P.orientalis were stronger than R.pseudoacacia,A.truncatum,Q.variabilis,Q.dentate and R.chinensis.3)The order of water consumption in different weather from large to small was:in sunny day>semi-sunny day>cloudy day;the water consumption in July,August and September was more than that in May,June and October;The water consumption of different tree species ATWCA was ranked as follows:A.truncatum(0.120 g·cm~(-2)d~(-1))>R.chinensis(0.115 g·cm~(-2)d~(-1))>Q.variabilis(0.098 g·cm~(-2)d~(-1))>Q.dentata(0.090 g·cm~(-2)d~(-1))>P.tabulaeformis(0.061 g·cm~(-2)d~(-1))>R.pseudoacacia(0.053 g·cm~(-2)d~(-1))>P.orientalis(0.039 g·cm~(-2)d~(-1));It showed that the water consumption of broad-leaved trees ATWCAB was higher than that of coniferous trees ATWCAC.4)The main factors affecting transpiration rate of tree species leaves are photosynthetic active radiation and stomatal resistance.
引文
[1]张丽平.北京市城市化对城市用水影响机制研究[D].北京:首都师范大学,2004.
    [2]RAO P,AGAEWAL S.K.Diurnal variation in leaf water potential,stomatal conductance,and irradiance of winter crop under different moisture levels[J].Biologia Plantarum,1984,26(1):1-4.
    [3]ALFIERI J G,NIYOGI D,BLANKEN P D,et al.Estimation of the Minimum Canopy Resistance for Croplands and Grasslands Using Data from the 2002 International H2O Project[J].MonthlyWeather Review,2008,136(11):4452-4469.
    [4]WANG H,GUAN H,DENG Z,et al.Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia[J].Water Resources Research,2014,50(7):6154-6167.
    [5]TUMA J,SKALICKY M,TUMOVA L,et al.Influence of cadmium dose and form on the yield of oat(Avena sativa L.)and the metal distribution in the plant[J].Journal of Elementology,2014,19(3):795-809.
    [6]SCHMIDT-WALTER P,RICHTER F,HERBST M,et al.Transpiration and water use strategies of a young and a full-grown short rotation coppice differing in canopy cover and leaf area[J].Agricultural and Forest Meteorology,2014,195-196:165-178.
    [7]SENOCK R S,LEUSCHNER C.Axial water flux dynamics in small diameter roots of a fast growing tropical tree[J].Plant&Soil,1999,208(1):57-71.
    [8]陈立欣.树木/林分蒸腾环境响应及其生理控制[D].北京:北京林业大学,2013.
    [9]邵永昌,李娟娟,付达夫,等.上海地区8种落叶阔叶树夏季光合蒸腾特性研究[J].西北林学院学报,2015,30(4):30-38.
    [10]肖辉杰,余新晓,贾瑞燕,等.北京山区典型人工林的耗水规律[J].中国水土保持科学,2014,12(2):72-77.
    [11]何春利,宁甫岩,李文忠,等.北京山区刺槐蒸腾耗水规律变化研究[J].北京水务,2015(1):28-32.
    [12]屈艳萍,康绍忠,王素芬,等.甘肃石羊河流域人工种植新疆杨耗水规律研究[J].中国水利水电科学研究院学报,2014,12(2):130-137.
    [13]余斐,华雷,李吉跃,等.干旱胁迫对3种桉树苗木耗水特性的影响[J].华南农业大学学报,2015,36(6):98-103.
    [14]王亚蕊,王彦辉,于澎涛,等.华北落叶松人工林蒸散及产流对叶面积指数变化的响应[J].生态学报,2016,36(21):6928-6938.
    [15]刘娜.洞庭湖流域3种树蒸腾对环境因子的响应及其模拟[D].长沙:湖南师范大学,2016.
    [16]QIAO C,SUN R,XU Z W,et al.A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in Northwestern China[J].IEEE Geoscience&Remote Sensing Letters,2015,12(2):369-373.
    [17]Bakken T H,Killingtveit,Engeland K,et al.Water consumption from hydropower plants-review of published estimates and an assessment of the concept[J].Hydrology and Earth System Sciences,2013,17(10):3983-4000.
    [18]邓继峰,丁国栋,赵媛媛,等.盐池地区三种典型树种蒸腾速率的研究[J].干旱区资源与环境,2014,28(7):161-165.
    [19]刘鑫.长三角典型造林树种蒸腾耗水规律研究[D].南京:南京林业大学,2014.
    [20]陈彪,陈立欣,刘清泉,等.半干旱地区城市环境下樟子松蒸腾特征及其对环境因子的响应[J].生态学报,2015,35(15):5076-5084.
    [21]陈慧新.北京山区主要树种光合蒸腾与耗水特性研究[D].北京:北京林业大学,2008.
    [22]杨学军,武菊英,滕文军,等.青绿苔草光合作用日变化及季节动态[J].草业科学,2014,31(1):102-107.
    [23]王玉涛.北京城市优良抗旱节水植物材料的筛选与评价研究[D].北京:北京林业大学,2008.
    [24]郝玥.基于稳定同位素的北京山区典型树种水分利用研究[D].北京:北京林业大学,2016.
    [25]邓文平.北京山区典型树种水分利用机制研究[D].北京:北京林业大学,2015.
    [26]王得祥,康博文.主要城市绿化树种苗木蒸腾耗水特性研究[J].西北林学院报,2004,19(4):20-23.
    [27]车文瑞.北京城区绿地主要乔灌草年耗水量的估算[D].北京:北京林业大学,2008.
    [28]于萌萌,张新建,袁凤辉,等.长白山阔叶红松林三种树种树干液流特征及其与环境因子的关系[J].生态学杂志,2014,33(7):1707-1714.
    [29]张涵丹,卫伟,陈利顶,等.典型黄土区油松树干液流变化特征分析[J].环境科学,2015,36(1):349-356.
    [30]任启文,忻富宁,李联地,等.冀北山地华北落叶松全生长季树干液流及蒸腾耗水特征[J].中南林业科技大学学报,2018,38(5):91-97.
    [31]陈婧,马履一,段劼,等.不同环境因子对黄连木1年生苗耗水规律的影响[J].西北林学院学报,2014,29(2):6-11.
    [32]买尔当·克依木,玉米提·哈力克,古丽卡玛尔·迪力木拉提,等.阿克苏市3种绿化乔木树干液流日变化特征[J].森林与环境学报,2016,36(4):473-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700