用户名: 密码: 验证码:
生物炭配施氮素对陆地棉盛花期根系形态与构型的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Biochar Combined with Nitrogen on Root Morphology and System Architecture during Gossypium hirsutum L. Full-bloom Stage
  • 作者:冯雷 ; 徐万里 ; 唐光木 ; 孙宁川 ; 蒲胜海 ; 耿增超
  • 英文作者:FENG Lei;XU Wanli;TANG Guangmu;SUN Ningchuan;PU Shenghai;GENG Zengchao;College of Natural Resources and Environment,Northwest A&F University;Institute of Soil Fertilizer and Water Conservation,Xinjiang Academy of Agricultural Sciences;
  • 关键词:棉花 ; 根系构型 ; 根系形态 ; 向地性 ; 生物炭 ;
  • 英文关键词:cotton;;root system architecture;;root morphology;;root geotropism;;biochar;;nitrogen
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:西北农林科技大学资源环境学院;新疆农业科学院土壤肥料与农业节水研究所;
  • 出版日期:2019-01-10 14:15
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金项目(31660073);; 公益性行业(农业)科研专项(201503136)
  • 语种:中文;
  • 页:NYJX201903026
  • 页数:9
  • CN:03
  • ISSN:11-1964/S
  • 分类号:248-256
摘要
为揭示生物炭与氮素相互作用对陆地棉盛花期根系形态及构型的影响规律,设置处理N0(常规施氮,施氮量0. 3 t/hm~2)、N0+Bc1%(常规施氮+棉秆炭质量为耕层土质量1%)、Nl+Bc1%(低氮0. 21 t/hm~2+棉秆炭质量为耕层土质量1%)、Nl+Bc2%(低氮0. 21 t/hm~2+棉秆炭质量为耕层土质量2%)和N0+Bc4%(常规施氮+棉秆炭质量为耕层土质量4%),掘根法采集棉花盛花期0~10 cm和大于10 cm土层根系,基于广义加性模型分析土层深度(0~10 cm和大于10 cm)、生物炭施用方式(生物炭与氮素比例)单独以及交互作用对根系节间距和根长密度的影响,并利用冗余分析影响根长密度的因子。结果表明:N0+Bc1%细根平均根长与Nl+Bc2%没有显著差异(p>0. 05),但显著高于N0+Bc4%、Nl+Bc1%、N0(p <0. 05)。0~10 cm土层根系平均分枝角为83°17',深层土壤(大于10 cm)根系分枝角均显著变大,Nl+Bc2%根系分枝角最大,为101°48'。生物炭施用方式改变了棉花根系节间距(p <0. 001),与来水方向270°根系节间距变化最显著,其中N0+Bc4%平均根节长度为4 cm。生物炭施用方式(p <0. 02)和土层深度(p <0. 001)均改变了棉花根长密度。冗余分析表明:浅层细根和中等根分枝角、深层细根分枝角和极细根根长比例是影响根长密度的主要因子。综上所述,1%~2%的生物炭配施0. 21 t/hm~2氮主要改变了深层土壤(大于10 cm)陆地棉根系构型及形态,并且2%生物炭弥补了灰漠土氮素不足的负作用。
        In order to reveal the interaction between biochar and nitrogen on affecting the root morphology and system architecture of cotton during full-bloom stage,the root systems and root growth angles of cotton by layered digging at 0 ~ 10 cm soil layers and below were analyzed through the generalized additive model and redundancy analysis under different biochar application regimes( N0( conventional nitrogen application,0. 3 t/hm~2),N0 + Bc1%( N0 + 1% cotton biochar as quality of topsoil),Nl +Bc1%( 0. 21 t/hm~2+ 1% cotton biochar as quality of topsoil),Nl + Bc2%( 0. 21 t/hm~2+ 2% cotton biochar as quality of topsoil) and N0 + Bc4%( N0 + 4% cotton biochar as quality of topsoil). The results showed that there was no significant difference between Nl + Bc2% and N0 + Bc1% in average fine root length,but it was significantly higher than those of N0 + bc4%,Nl + Bc1% and N0( p < 0. 05). The average root branch angle was 83°17' at 0 ~ 10 cm soil layers and it showed no significance between each group( p > 0. 05),however,root branching angle was significantly larger at deeper soil,and root branching angle was 101° 48' under Nl + Bc2%. Biochar application changed the cotton root spacing section( p < 0. 001),and it was more significantly changed in direction with water coming of 270°,where the longest was 4 cm under N0 + Bc4%. The specific root length density of cotton was altered by biochar application regimes( p < 0. 02) and soil depth( p < 0. 001) separately. The redundancy analysis showed that the main factors influencing the root length density were the vertical angle of fine and medium roots in the topsoil,the vertical angle of fine root in the bottom and the percentages of very fine root length.Among root traits,the fine root length was most closely related to vertical root angle. This suggested that vertical root distribution constitutively affected fine root length. Significant genotypic variation existed in the root diameter and root growth angle in interaction with biochar and nitrogen. To sum up,the application of 0. 21 t/hm~2 nitrogen with biochar of 1% ~ 2% topsoil mass mainly changed the root system architecture and morphology of cotton at the bottom soil( > 10 cm) and 2% biochar made up for the negative effect of nitrogen deficiency.
引文
[1] FAGERIA N K. The role of plant roots in crop production[J]. Role of Plant Roots in Crop Production,2012,27(2):89-99.
    [2] LASKOWSKI M,TEN TUSSCHER K H. Periodic lateral root priming:what makes it tick?[J]. Plant Cell,2017,29(3):432-444.
    [3] KONG X,ZHANG M,DE S I,et al. Designer crops:optimal root system architecture for nutrient acquisition[J]. Trends in Biotechnology,2014,32(12):597-598.
    [4] MITCHELL K,FRENCH E,BECKERMAN J,et al. Biochar alters the root systems of large crabgrass[J]. Hortscience A Publication of the American Society for Horticultural Science,2018,53(3):354-359.
    [5] HAGEMANN N,JOSEPH S,SCHMIDT H P,et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility[J]. Nature Communications,2017,8(1):1089-1099.
    [6] PRENDERGAST-MILLER M T,DUVALL M,SOHI S P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability[J]. European Journal of Soil Science,2014,65(1):173-185.
    [7] OLMO M,VILLAR R,SALAZAR P,et al. Changes in soil nutrient availability explain biochar's impact on wheat root development[J]. Plant&Soil,2016,399(1-2):1-11.
    [8] VIGER M,HANCOCK R D,MIGLIETTA F,et al. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar[J]. Global Change Biology Bioenergy,2015,7(4):658-672.
    [9]刘悦,黎子涵,邹博,等.生物炭影响作物生长及其与化肥混施的增效机制研究进展[J].应用生态学报,2017,28(3):1030-1038.LIU Yue,LI Zihan,ZOU Bo,et al. Research progress in effects of biochar application on crop growth and synergistic mechanism of biochar with fertilizer[J]. Chinese Journal of Applied Ecology,2017,28(3):1030-1038.(in Chinese)
    [10] FRENCH E,IYERPASCUZZI A S. A role for the gibberellin pathway in biochar-mediated growth promotion[J]. Scientific Reports,2018,8(1):5389-5398.
    [11]李瑞霞,李洪杰,霍艳丽,等.生物炭对华北冬小麦根系形态和内生真菌多样性的影响[J/OL].农业机械学报,2018,49(3):235-242.LI Ruixia,LI Hongjie,HUO Yanli,et al. Effect of biochar on root morphology and endophytic fungal diversity of winter wheat in North China[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(3):235-242. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20180328&journal_id=jcsam. DOI:10. 6041/j.issn. 1000-1298. 2018. 03. 028.(in Chinese)
    [12] ABIVEN S,HUND A,MARTINSEN V,et al. Biochar amendment increases maize root surface areas and branching:a shovelomics study in Zambia[J]. Plant&Soil,2015,395(1):1-11.
    [13] SPOKAS K A,BAKER J M,REICOSKY D C. Ethylene:potential key for biochar amendment impacts[J]. Plant&Soil,2010,333(1-2):443-452.
    [14]勾芒芒,屈忠义.土壤中施用生物炭对番茄根系特征及产量的影响[J].生态环境学报,2013,22(8):1348-1352.GOU Mangmang,QU Zhongyi. Effect of biochar on root distribution and yield of tomato in sandy loam soil[J]. Ecology&Environmental Sciences,2013,22(8):1348-1352.(in Chinese)
    [15]胡廷章,胡宗利,屈霄霄,等.氮素供应对植物根系生长发育的影响[J].生命的化学,2009,29(3):391-394.HU Tingzhang,HU Zongli,QU Xiaoxiao,et al. Effects of nitrogen supply on plant root growth and development[J].Chemistry of Life,2009,29(3):391-394.(in Chinese)
    [16]谢志良,田长彦.膜下滴灌水氮耦合对棉花干物质积累和氮素吸收及水氮利用效率的影响[J].植物营养与肥料学报,2011,17(1):160-165.XIE Zhiliang,TIAN Changyan. Coupling effects of water and nitrogen on dry matter accumulation,nitrogen uptake and waternitrogen use efficiency of cotton under mulched drip irrigation[J]. Acta Metallurgica Sinica,2011,17(1):160-165.(in Chinese)
    [17]侯振安,李品芳,龚江,等.不同滴灌施肥策略对棉花氮素吸收和氮肥利用率的影响[J].土壤学报,2007,44(4):702-708.HOU Zhen'an,LI Pinfang,GONG Jiang,et al. Effects of different drip irrigation and fertilization strategies on nitrogen absorption and nitrogen utilization of cotton[J]. Acta Pedologica Sinica,2007,44(4):702-708.(in Chinese)
    [18]李发虎,李明,刘金泉,等.生物炭对温室黄瓜根际土壤真菌丰度和根系生长的影响[J/OL].农业机械学报,2017,48(4):265-270.LI Fahu,LI Ming,LIU Jinquan,et al. Effects of biochar on fungal abundance of rhizosphere soil and cucumber root growth in greenhouse[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):265-270. http:∥www. jcsam. org/jcsam/ch/reader/view_abstract. aspx? file_no=20170434&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2017. 04.034.(in Chinese)
    [19] SCHOMBERG H H,GASKIN J W,HARRIS K,et al. Influence of biochar on nitrogen fractions in a coastal plain soil[J].Journal of Environmental Quality,2012,41(4):1087-1095.
    [20]程效义,张伟明,孟军,等.玉米秸秆炭对玉米物质生产及产量形成特性的影响[J].玉米科学,2016(1):117-122.CHENG Xiaoyi,ZHANG Weiming,MENG Jun,et al. Effect of biochar on maize dry matter accumulation and yield[J].Journal of Maize Sciences,2016(1):117-122.(in Chinese)
    [21]赵凤亮,邹雨坤,朱治强,等.施用椰壳生物炭对砖红壤氮素淋失和油麦菜吸收利用的影响[J].华北农学报,2015,30(增刊1):400-404.ZHAO Fengliang,ZOU Yukun,ZHU Zhiqiang,et al. Impacts of biochar addition on nitrogen leaching and use efficiency of leaf-used lettuce[J]. Acta Agriculturae Boreali-Sinica,2015,30(Supp. 1):400-404.(in Chinese)
    [22]贾明方.根域限制以及添加保水剂和生物炭对葡萄生长发育的影响[D].泰安:山东农业大学,2015.JIA Mingfang. Effects of root domain restriction and addition of water retention agent and biochar on grape growth and development[D]. Taian:Shandong Agricultural University,2015.(in Chinese)
    [23]彭云峰,张吴平,李春俭.不同氮吸收效率玉米品种的根系构型差异比较:模拟与应用[J].中国农业科学,2009,42(3):843-853.PENG Yunfeng,ZHANG Wuping,LI Chunjian. Relationship between nitrogen efficiency and root architecture of maize plants:simulation and application[J]. Scientia Agricultura Sinica,2009,42(3):843-853.(in Chinese)
    [24]马云艳.棉秆生物炭对棉花黄萎病菌及棉花生长的影响[D].杨凌:西北农林科技大学,2014.MA Yunyan. Effects of cotton stalk biochar on verticillium wilt and growth of cotton[D]. Yangling:Northwest A&F University,2014.(in Chinese)
    [25]于莎,王友华,周治国,等.花铃期遮阴对棉花氮素代谢的影响及其机制[J].作物学报,2011,37(10):1879-1887.YU Sha,WANG Youhua,ZHOU Zhiguo,et al. Effect of shade on nitrogen metabolism and its mechanism in cotton plant at flowering and boll-forming stage[J]. Acta Agronomica Sinica,2011,37(10):1879-1887.(in Chinese)
    [26] MINEROVIC A J,VALVERDE-BARRANTES O J,BLACKWOOD C B. Physical and microbial mechanisms of decomposition vary in importance among root orders and tree species with differing chemical and morphological traits[J]. Soil Biology&Biochemistry,2018,124:142-149.
    [27] HONG J,MA X,YAN Y,et al. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?[J]. Plant&Soil,2018,424(1-2):1-10.
    [28] GRABER E R,HAREL Y M,KOLTON M,et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant&Soil,2010,337(1-2):481-496.
    [29] RAZAP M,SALAHUDDIN,SHEN H L,et al. Influence of biochar and nitrogen on fine root morphology,physiology,and chemistry of Acer mono[J]. Scientific Reports,2017,7(1):5367-5377.
    [30] LIANG Y,ZHAO X,JONES A M,et al. G proteins sculp root architecture in response to nitrogen in rice and Arabidopsis[J].Plant Science,2018,274(5):129-137.
    [31] FORDE B G. Glutamate signalling in roots[J]. Journal of Experimental Botany,2014,65(3):779-787.
    [32] FARLEY R A,FITTER A H. Temporal and spatial variation in soil resources in a deciduous woodland[J]. Journal of Ecology,1999,87(4):688-696.
    [33] BRUUN E W,PETERSEN C T,HANSEN E,et al. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention[J]. Soil Use&Management,2014,30(1):109-118.
    [34] ROYCHOUDHRY S,KIEFFER M,BIANCO M D,et al. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean[J]. Scientific Reports,2017,7:42664. doi:org/10. 1038/srep42664.
    [35] GUSEMAN J M,WEBB K,SRINIVASAN C,et al. DRO1 influences root system architecture in Arabidopsis and Prunus species[J]. The Plant Journal,2017,89(6):1093-1105.
    [36]叶子奇,邓如军,王雨辰,等.胡杨繁殖根系分枝特征及其与土壤因子的关联性[J].北京林业大学学报,2018,40(2):31-39.YE Ziqi,DENG Rujun,WANG Yuchen,et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University,2018,40(2):31-39.(in Chinese)
    [37]郑慧玲,赵成章,冯威,等.琵琶柴不同分支序级根系生物量分配格局的坡向差异[J].生态学杂志,2015,34(11):3065-3071.ZHENG Huiling,ZHAO Chengzhang,FENG Wei,et al. Difference in biomass allocation pattern among different branch orders in Reaumuria soon-gorica with slope aspects[J]. Chinese Journal of Ecology,2015,34(11):3065-3071.(in Chinese)
    [38] NELISSEN V,SAHA B K,RUYSSCHAERT G,et al. Effect of different biochar and fertilizer types on N2O and NO emissions[J]. Soil Biology&Biochemistry,2014,70(2):244-255.
    [39] WANG Z,GUO H,SHEN F,et al. Biochar produced from oak sawdust by Lanthanum(La)-involved pyrolysis for adsorption of ammonium(NH4+),nitrate(NO3-),and phosphate(PO34-)[J]. Chemosphere,2015,119:646-653.
    [40] KOLTON M,GRABER E R,TSEHANSKY L,et al. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere[J]. New Phytologist,2017,213(3):1393-1404.
    [41] WELLS C E,EISSENSTAT D M. Beyond the roots of young seedlings:the influence of age and order on fine root physiology[J]. Journal of Plant Growth Regulation,2002,21(4):324-334.
    [42]赵占军.黄花苜蓿分枝与根系形态的研究[D].长春:东北师范大学,2007.ZHAO Zhanjun. The study of branch and root morphometrics of Medicago falcata[D]. Changchun:Northeast Normal University,2007.(in Chinese)
    [43] LINKOHR B I,WILLIAMSON L C,FITTER A H,et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis[J]. Science in China,2010,29(6):751-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700