用户名: 密码: 验证码:
IRAK-1表达水平与COPD大鼠PASMCs分泌PDGF-AB和IL-6的相关性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation between expression level of IRAK-1 and secretion of PDGF-AB and IL-6 by pulmonary artery smooth muscle cells treated with LPS in COPD rats
  • 作者:王鹏雁 ; 王昌明 ; 郑增光
  • 英文作者:WANG Peng-yan;WANG Chang-ming;ZHENG Zeng-guang;Department of Critical Care Medicine,Zhejiang Hospital;Department of Respiratory Medicine,Affiliated Hospital of Guilin Medical University;Department of Pathology,Zhejiang Cancer Hospital;
  • 关键词:慢性阻塞性肺疾病 ; 肺动脉平滑肌细胞 ; 白细胞介素1受体相关激酶1 ; 血小板源性生长因子AB ; 白细胞介素6
  • 英文关键词:Chronic obstructive pulmonary disease;;Pulmonary artery smooth muscle cells;;Interleukin-1 receptor-associated kinase-1;;Platelet-derived growth factor-AB;;Interleukin-6
  • 中文刊名:ZBLS
  • 英文刊名:Chinese Journal of Pathophysiology
  • 机构:浙江医院重症医学科;桂林医学院附属医院呼吸科;浙江省肿瘤医院病理科;
  • 出版日期:2019-03-21 18:55
  • 出版单位:中国病理生理杂志
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(No.81360010);; 浙江省卫生科技项目(No.2018252439)
  • 语种:中文;
  • 页:ZBLS201903027
  • 页数:5
  • CN:03
  • ISSN:44-1187/R
  • 分类号:173-177
摘要
目的:探讨白细胞介素1受体相关激酶1(IRAK-1)与慢性阻塞性肺疾病(COPD)大鼠肺动脉平滑肌细胞(α-平滑肌肌动蛋白(α-SMA),PASMCs)分泌血小板源性生长因子AB(PDGF-AB)和白细胞介素6(IL-6)的相关性。方法:构建COPD大鼠模型,HE染色观察肺组织病理学变化,图像分析法测定远端肺动脉管壁厚度占动脉外径的百分比(WT%)和管壁面积占血管总面积的百分比(WA%)。消化、分离和纯化COPD大鼠远端PASMCs,并采用特异性抗α-平滑肌肌动蛋白(α-SMA)抗体进行细胞免疫荧光鉴定大鼠PASMCs。将COPD大鼠PASMCs随机分为对照组(不进行干预)、脂多糖(LPS)组(终浓度为1 mg/L)、IRAK-1/4抑制剂组(终浓度为10μmol/L)和LPS+IRAK-1/4抑制剂组(IRAK-1/4抑制剂终浓度为10μmol/L,预处理30 min后加入LPS,终浓度为1 mg/L),采用Western blot检测各组PASMCs中p-IRAK-1和IRAK-1的蛋白水平;ELISA方法检测各组PASMCs上清液中PDGF-AB和IL-6的浓度。结果:COPD模型组WT%和WA%较空白对照组升高(P<0.01)。光学显微镜下COPD大鼠PASMCs呈梭形,荧光镜下可见胞质α-SMA蛋白染成红色。与对照组相比,LPS组p-IRAK-1蛋白表达水平及PDGF-AB和IL-6的含量升高(P<0.05);与LPS组相比,LPS+IRAK-1/4抑制剂组p-IRAK-1的蛋白水平及PDGF-AB和IL-6的含量明显降低(P<0.05)。IRAK-1磷酸化水平与细胞上清液中PDGF-AB和IL-6的浓度呈正相关。结论:IRAK-1参与COPD大鼠PASMCs分泌PDGF-AB和IL-6的调控。这为COPD的早期干预提供了新依据。
        AIM: To explore the expression level of interleukin-1 receptor-associated kinase-1(IRAK-1) and the secretion function of pulmonary artery smooth muscle cells(PASMCs) in chronic obstructive pulmonary disease(COPD) rats.METHODS: A rat model of COPD was established. Image analysis was used to calculate the ratio of thickness to outside diameter of pulmonary arterioles(WT%) and the ratio of vessel wall area to total vessel area(WA%). The PASMCs from COPD rats were digested, isolated and purified, and the cells were randomly divided into control group, lipopolysaccharide(LPS) group, IRAK-1/4 inhibitor group and LPS + IRAK-1/4 inhibitor group. The protein levels of p-IRAK-1 and IRAK-1 were determined by Western blot. The levels of platelet-derived growth factor-AB(PDGF-AB) and interleukin-6(IL-6) in the culture supernatant of PASMCs in each group were measured by ELISA. The correlation between p-IRAK-1 level and the concentrations of the secretion factors in the PASMCs was analyzed. RESULTS: The WT% and WA% in COPD model group were higher than those in control group(P<0.01). Under the optical microscope, the PASMCs showed in spindle in shape, and their α-smooth muscle actin was stained red under fluorescence microscope. Compared with control group, LPS up-regulated the protein level of phosphorylated IRAK-1(p-IRAK-1) and the levels of PDGF-AB and IL-6(P<0.05). IRAK-1/4 inhibitor was capable of suppressing the effects of LPS(P<0.05). The protein level of p-IRAK-1 was positively correlated with the concentrations of PDGF-AB and IL-6 in the PASMCs. CONCLUSION: IRAK-1 participates in the regulation of PASMCs to secrete PDGF-AB and IL-6, which provided a new target for the early intervention of COPD.
引文
[1] Yi B, Cui J, Ning JN, et al. Over-expression of PKGIα inhibits hypoxia-induced proliferation, Akt activation, and phenotype modulation of human PASMCs: the role of phenotype modulation of PASMCs in pulmonary vascular remodeling[J]. Gene, 2012, 492(2):354-360.
    [2] Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling[J]. Thromb Haemost, 2012, 107(4):611-618.
    [3] 莫碧文, 苏海英, 韦江红, 等. TLR4/PI3K信号相关分子在气道上皮细胞诱导的哮喘气道平滑肌细胞迁移功能中的作用[J]. 中华微生物学和免疫学杂志, 2011, 31(11):994-999.
    [4] 韩旭惠, 王昌明, 蒋明, 等. TLR4表达水平与COPD大鼠肺动脉平滑肌细胞合成分泌功能的关系[J]. 安徽医科大学学报, 2017, 52(9):1310-1314.
    [5] Orr R, Smith LJ, Cuttica MJ. Pulmonary hypertension in advanced chronic obstructive pulmonary disease[J]. Curr Opin Pulmonary Med, 2012, 18(2):138-143.
    [6] Cheng H, Addona T, Keshishian H, et al. Regulation of IRAK-4 kinase activity via autophosphorylation within its activation loop[J]. Biochem Biophys Res Commun, 2007, 352(3):609-616.
    [7] Cao Z, Henzel WJ, Gao X. IRAK: a kinase associated with the interleukin-1 receptor[J]. Science, 1996, 271(5252):1128-1131.
    [8] Jain M, Singh A, Singh V, et al. Involvement of interleukin-1 receptor-associated kinase-1 in vascular smooth muscle cell proliferation and neointimal formation after rat carotid injury[J]. Arterioscler Thromb Vasc Biol, 2015, 35(6):1445-1455.
    [9] Thomas JA, Haudek SB, Koroglu T, et al. IRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction[J]. Am J Physiol Heart Circ Physiol, 2003, 285(2):H597-H606.
    [10] Lye E, Dhanji S, Calzascia T, et al. IRAK-4 kinase activity is required for IRAK-4-dependent innate and adaptive immune responses[J]. Eur J Immunol, 2008, 38(3):870-876.
    [11] Takahashi J, Orcholski M, Yuan K, et al. PDGF-depen-dent β-catenin activation is associated with abnormal pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension[J]. FEBS Lett, 2016, 590(1):101-109.
    [12] Dijkgraaf EM, Welters MJ, Nortier JW, et al. Interleukin-6/interleukin-6 receptor pathway as a new therapy target in epithelial ovarian cancer[J]. Curr Pharm Design, 2012, 18(25):3816-3827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700