用户名: 密码: 验证码:
离子类土壤固化剂对高温冻土工程性质改良试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of the engineering properties of warm frozen soil treated with ionic soil stabilizer(ISS)
  • 作者:张致龙 ; 张建明 ; 张虎 ; 柴明堂
  • 英文作者:ZHANG Zhilong;ZHANG Jianming;ZHANG Hu;CHAI Mingtang;College of Civil Engineering and Architecture, Xinjiang University;State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:离子类土壤固化剂 ; 塑性指数 ; 高温冻土 ; 体积压缩系数
  • 英文关键词:ionic soil stabilizer(ISS);;plasticity index;;warm frozen soil;;coefficient of volumetric compression
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:新疆大学建筑工程学院;中国科学院西北生态环境资源研究院冻土工程国家重点实验室;中国科学院大学;
  • 出版日期:2019-03-13 10:40
  • 出版单位:冰川冻土
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(41471062; 41401087);; 冻土工程国家重点实验室自主研究项目(SKLFSE-ZT-06)资助
  • 语种:中文;
  • 页:BCDT201901015
  • 页数:7
  • CN:01
  • ISSN:62-1072/P
  • 分类号:146-152
摘要
为了研究离子类土壤固化剂对青藏高原高温冻土工程性质的改良效果,分别选用酸性和碱性离子类土壤固化剂对冻结青藏粉质黏土进行了改良测试。塑性指数测试表明,两种固化剂的最优含量为0.20%。固化剂含量小于0.30%时,冻结温度相对原状土样没有明显的下降。对不同含量碱性和酸性固化土力学性质进行了测试,无侧限单轴抗压强度相对原状土样整体增大,碱性和酸性固化土抗压强度最大分别提高了78.7%和46.6%,最优配比(0.20%)的碱性和酸性固化土体积压缩系数随养护龄期增大而减小,两种固化土的体积压缩系数相对原状土样最大分别下降了44.4%和27.8%,固化效果明显。碱性固化土力学性质变化更显著,说明碱性固化剂更适合对青藏黏土进行改良。
        In this paper, it is focused on how to improve the engineering property of warm frozen soil on the Qinghai-Tibet Plateau by ionic soil stabilizer(ISS). The alkaline ISS and acidic ISS were chosen to improve mechanical properties of frozen silty clay. The optimal proportion of the improved soil specimen was determined by the test of the plasticity index. The maximum compressive strengths of the specimens treated with alkaline ISS and acidic ISS have increased by 78.7% and 46.6%, respectively. The coefficient of volumetric compression of the soil treated with optimal alkaline ISS and acidic ISS have decreased with conservation periods, with the coefficient of volumetric compression decreased by 44.4% and 27.8%, respectively, as compared with the undisturbed soil. One can see that the effect of cementation is obvious. Especially, the mechanics properties of the alkaline solidified soil have improved more significantly, showing that alkaline ISS is more suitable for the Tibetan clay to improve.
引文
[1] Tsytovich N. The mechanics of frozen ground[M]. Zhang Changqing, Zhu Yuanlin, trans. Beijing: Science Press, 1985. [崔托维奇H. 冻土力学[M]. 张长庆, 朱元林, 译. 北京: 科学出版社, 1985.]
    [2] Zhang Jianming. Study on roadbed stability in permafrost regions on Qinghai-Tibetan Plateau and classification of permafrost in highway engineering[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2004. [张建明. 青藏高原冻土路基稳定性及公路工程多年冻土分类研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2004.]
    [3] Su Kai, Zhang Jianming, Liu Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375. [苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375.]
    [4] Liu Shiwei, Zhang Jianming. Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. [刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129.]
    [5] Yu Fan, Qi Jilin, Yao Xiaoliang, et al. Monitoring settlement at different depths within an embankment in permafrost region[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 813-818. [余帆, 齐吉琳, 姚晓亮, 等. 多年冻土区路基分层变形现场观测研究[J]. 冰川冻土, 2011, 33(4): 813-818.]
    [6] Wang Honglei, Sun Zhizhong, Liu Yongzhi, et al. Thermal state of embankment with thawed interlayer in permafrost regions of the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 934-942. [王宏磊, 孙志忠, 刘永智, 等. 青藏铁路多年冻土区含融化夹层路基的热状态[J]. 冰川冻土, 2018, 40(5): 934-942.]
    [7] Cheng Guodong, Ma Wei. Frozen soil engineering problem in construction of the Qinghai-Tibet Railway[J]. Chinese Journal of Nature, 2006, 28(6): 315-320. [程国栋, 马巍. 青藏铁路建设中冻土工程问题[J]. 自然杂志, 2006, 28(6): 315-320.]
    [8] Cheng Guodong. Interaction between Qinghai-Tibet Railway engineering and permafrost and environmental effects[J]. Bulletin of the Chinese Academy of Sciences, 2002, 17(1): 21-25. [程国栋. 青藏铁路工程与多年冻土相互作用及环境效应[J]. 中国科学院院刊, 2002, 17(1): 21-25.]
    [9] Lunardini V J. Climatic warming and the degradation of warm permafrost[J]. Permafrost and Periglacial Processes, 1996, 7(4): 311-320.
    [10] Buteau S, Fortier R, Delisle G, et al. Numerical simulation of the impacts of climate warming on a permafrost mound[J]. Permafrost and Periglacial Processes, 2004, 15(1): 41-57.
    [1[1] Fan Henghui, Gao Jian′en, Wu Pute. The research status and prospect of soil stabilizers[J]. Journal of Northwest Science-Technology University of Agriculture and Forestry (Natural Science Edition), 2006, 34(2): 141-146. [樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141-146.]
    [12] Shaviv A, Ravina I, Zaslavsky D. Application of soil conditioner solutions to soil columns to increase water stability of aggregates[J]. Soil Science Society of America Journal, 1987, 51(2): 431-436.
    [13] Shawqui M L, Neaz A. Effect of new soil stabilizers on the compressive strength of dune sand[J]. Construction and Building Materials, 1998, 12(6): 321-328.
    [14] Xiang Wei, Cui Deshan, Liu Li. Experimental study on sliding soil of ionic soil stabilizer-reinforces[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(3): 397-402. [项伟, 崔德山, 刘莉. 离子土固化剂加固滑坡滑带土的试验研究[J]. 地球科学: 中国地质大学学报, 2007, 32(3): 397-402.]
    [15] Cui Deshan, Xiang Wei. Pore diameter distribution test of red clay treated with ISS[J]. Rock and Soil Mechanics, 2010, 31(10): 3096-3100. [崔德山, 项伟. ISS加固红色黏土的孔隙分布试验研究[J]. 岩土力学, 2010, 31(10): 3096-3100.]
    [16] Huang Zhijun, Liang Bo, Sun Changxin. Study of characteristic of claycrete clay soil stabilizer improved soil under thawing condition[J]. Journal of Lanzhou Railway University (Natural Sciences), 2003, 22(6): 88-91. [黄志军, 梁波, 孙常新. 冻融条件下奇极土壤固化剂改良土性能研究[J]. 兰州铁道学院学报(自然科学版), 2003, 22(6): 88-91.]
    [17] Shan Zhijie, Zhang Xingchang, Zhao Weixia, et al. Effects of EN-1 soil stabilizer on soil anti-erodibility[J]. Journal of Soil and Water Conservation, 2010, 24(5): 6-9. [单志杰, 张兴昌, 赵伟霞, 等. EN-1固化剂对土壤抗蚀性的影响[J]. 水土保持学报, 2010, 24(5): 6-9.]
    [18] Liu Yutong, Yang Lin. Study of the mechanical properties of stabilized soil containing PPF under freezing and thawing cycles[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 850-857. [刘雨彤, 杨林. 冻融作用下PPF稳定土力学性能研究[J]. 冰川冻土, 2017, 39(4): 850-857.]
    [19] Liu Jin, Shi Bin, Jiang Hongtao. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer[J]. Engineering Geology, 2011, 117(1): 114-120.
    [20] Abduliah A K, Shihab W A. Evaluation of three waterborne polymers as stabilizers for sandy soil[J]. Geotechnical and Geological Engineering, 2006, 24(6): 1603-1625.
    [2[1] Shen Ying, Liu Jimin, Zhao Shuping. Long-term stability of thermometric thermistor sensor SKLFSE-TS used at low temperature[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 891-897. [沈颖, 刘继民, 赵淑萍. 用于低温测量的SKLFSE-TS热敏电阻温度传感器长期稳定性论证[J]. 冰川冻土, 2012, 34(4): 891-897.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700