用户名: 密码: 验证码:
深圳河湾流域水污染源解析研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water Source Apportionment of Pollutions in Shenzhen Bay Basin
  • 作者:宋芳 ; 秦华鹏 ; 陈斯典 ; 赵志杰
  • 英文作者:SONG Fang;QIN Huapeng;CHEN Sidian;ZHAO Zhijie;School of Environment and Energy, Peking University at Shenzhen Graduate School;College of Environmental Sciences and Engineering, Peking University;
  • 关键词:深圳河湾流域 ; 污染源解析 ; SWMM ; 非点源
  • 英文关键词:Shenzhen Bay basin;;water source apportionment of pollution;;SWMM;;non-point source pollution
  • 中文刊名:BJDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Pekinensis
  • 机构:北京大学深圳研究生院环境与能源学院;北京大学环境科学与工程学院;
  • 出版日期:2019-03-08 07:00
  • 出版单位:北京大学学报(自然科学版)
  • 年:2019
  • 期:v.55;No.292
  • 基金:流域生态工程学学科建设(深发改[2017]542号)资助
  • 语种:中文;
  • 页:BJDZ201902013
  • 页数:12
  • CN:02
  • ISSN:11-2442/N
  • 分类号:124-135
摘要
利用污染源调查资料、污水处理厂运行数据、底质监测结果、SWMM的非点源污染模型和截排系统溢流模型,估算深圳河湾流域的非点源和溢流污染负荷,解析流域主要污染物的时空分布和来源,得到如下结论。1) 2015年深圳河湾流域全年入河负荷量为COD 3.676万t/a,氨氮5715.65t/a,TP494.36t/a,其中点源为COD2.63万t/a,氨氮5496.9t/a,TP 463.55t/a,占全年的比例分别为72%,96%和94%。非点源负荷为COD8608 t/a,氨氮99.8t/a,TP18 t/a。雨季(4—9月)溢流总负荷为COD1894.05 t,氨氮118.95 t,TP12.81 t。2)深圳河湾流域单日入河负荷为COD116.5 t/d,氨氮15.75 t/d,TP1.412 t/d;旱季污染源中漏排污水,各指标负荷属排污口和支流漏排占比最大;旱季点源总COD为71.94 t/d,氨氮为15.06 t/d,TP为1.27 t/d。雨季中,非点源的COD占比最大(34.21%),其次是支流漏排(28.73%)和排污口(22.3%);3)雨季非点源和溢流的负荷对水质的影响不能忽略,尤其是暴雨天,虽然时间短,但大量负荷对水质冲击的影响极其严重,恢复到正常水质需较长的时间。
        By using pollution source survey data, sewage treatment plant data, sediment monitoring results and SWMM, this study estimated the non-point source and overflow load of the basin. By analyzing the spatial and temporal distribution of major pollutants, the following results were obtained. 1) The chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total phosphorous(TP) loads in Shenzhen River basin in 2015 were 36760 t/a, 5715.65 t/a and 494.36 t/a, respectively. The COD, NH3-N and TP loads of the point source were 26300 t/a, 5496.9 t/a, and 463.55 t/a. The point source accounts for 72% of COD, 96% of NH3-N, and 94% of TP of the whole year. The COD, NH3-N and TP loads of the non-point source were 8608 t/a, 99.8 t/a and 18 t/a. The COD, NH3-N and TP loads of the overflow in rainy season(April to September) were 1894.05 t, 118.95 t and 12.81 t. 2) The COD, NH3-N and TP loads in Shenzhen Bay basin in 2015 were 116.5 t/d, 15.75 t/d and 1.412 t/d; the sewage outlets and the leakage sewage to tributary were the largest proportion of all source during the dry season. The COD, NH3-N and TP loads of the point source were 71.94 t/d, 15.06 t/d, and 1.27 t/d during the dry season. During the rainy season, the non-point source COD accounted for the largest proportion(34.21%), followed by and the leakage sewage to tributary and the sewage outlets, which were 28.73% and 22.3%. 3) Due to a large amount of pollutant load were transported into the waterbody, the pollutant load from non-point source and overflow considerably effected the water quality during the rainy season that could not be ignored, especially in the rainy days, and it took a long time to return to normal water quality.
引文
[1]张怀成,董捷,王在峰.水污染源源解析研究最新进展.中国环境监测,2013,29(1):18-22
    [2]苏丹,唐大元,刘兰岚,等.水环境污染源解析研究进展.生态环境学报,2009,18(2):749-755
    [3]周慧平,高燕,尹爱经.水污染源解析技术与应用研究进展.环境保护科学,2014,40(6):19-24
    [4]王在峰,张水燕,张怀成,等.水质模型与CMB相耦合的河流污染源源解析技术.环境工程,2015,33(2):135-139
    [5]陈锋,孟凡生,王业耀,等.地表水环境污染物受体模型源解析研究与应用进展.南水北调与水利科技,2016,14(2):32-37
    [6]段华平,刘德进,杨国红,等.基于清单分析的农业面源污染源强计算方法.环境科学与管理,2009,34(12):58-61
    [7]许劲.基于传质原理的二维随机水质模型研究与应用[D].重庆:重庆大学,2007
    [8]石竹.基于不确定性水质模型的湘江长株潭段水环境容量研究[D].长沙:湖南大学,2009
    [9]王莉.环境影响评价中常用水质模型的应用研究[D].兰州:兰州大学,2006
    [10]苗红波.城市河流排污口近区污染物二维水质模型[D].成都:四川大学,2004
    [11]黄国兰,萧航,陈春江,等.化学质量平衡法在水体污染物源解析中的应用.环境科学,1999(6):14-17
    [12]李昆,王玲,焦栗,等.武当山剑河流域水污染源解析.台湾农业探索,2013(1):73-77
    [13]Gleser L J.Some thoughts on chemical mass balance models.Chemometrics and Intelligent Laboratory Systems,1997,37(1):15-22
    [14]Park S S,Kim Y J.Source contributions to fine particulate matter in an urban atmosphere.Chemosphere,2005,59(2):217-226
    [15]Lim M,Ayoko G A,Morawska L.Characterization of elemental and polycyclic aromatic hydrocarbon compositions of urban air in Brisbane.Atmospheric Environment,2005,39(3):463-476
    [16]黄振旭,陈昱,周涛,等.溧阳重点流域污染源解析研究.水资源研究,2016,5(1):59-64
    [17]Pekey H,Dogan G.Application of positive matrix factorisation for the source apportionment of heavy metals in sediments:a comparison with a previous factor analysis study.Microchemical Journal,2013,106:233-237
    [18]任华堂,陶亚,夏建新.深圳湾水环境特性及其突发污染负荷响应研究.应用基础与工程科学学报,2011,19(1):52-63
    [19]郑明凤,陈斯典,秦华鹏,等.降雨径流污染对深圳湾富营养化影响的模拟研究.中国给水排水,2017(9):133-138
    [20]陶亚,赵喜亮,栗苏文,等.基于TMDL的深圳湾流域污染负荷分配.安全与环境学报,2013,13(2):46-51
    [21]任华堂,陶亚,夏建新,等.旱季深圳湾水污染输移扩散特性研究.水力发电学报,2010,29(4):132-139
    [22]刘玉,路宁宁,张俊帆,等.深圳湾福田红树林区藻类、纤毛虫等生物群落及其与环境的关系.热带海洋学报,2006,25(5):56-62
    [23]沈韫芬,徐盈,冯伟松,等.香港米浦基围塘中有机氯农药和多氯联苯在微型生物群落中的积累.应用与环境生物学报,2004,10(5):543-550
    [24]刘文新,李向东.深圳湾水域中重金属在不同相间的分布特征.环境科学学报,2002,22(3):305-309
    [25]唐得昊,刘兴健,邹欣庆.海湾表层沉积物重金属污染与潜在生态危害评价--以深圳湾为例.环境化学,2014(8):1294-1300
    [26]吴小菁,刘彤宙,张慧妍.深圳河河水与底泥致臭贡献的实验研究.水利水电技术,2015,46(2):53-55
    [27]应太林,张国莹,吴芯芯.苏州河水体黑臭机理及底质再悬浮对水体的影响.上海环境科学,1997(1):23-26
    [28]方宇翘,应太林,襄祖楠,等.污染河流底泥释放与耗氧对水质的影响.环境科学研究,1991(2):24-31
    [29]来彦伟.苏州河底泥污染状况及其治理对策.上海师范大学学报(自然科学版),2000,29(2):85-92
    [30]张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究.环境污染治理技术与设备,2003,4(2):22-26
    [31]Brady D J.Managing the water program.Journal of Environmental Engineering-ASCE,2004,130(6):591-593
    (1)2010年深圳城市规划设计院的《深圳河湾流域水环境综合规划报告》,2014年中水珠江规划勘测设计有限公司的《深圳湾综合治理规划》, 2016年北京大学编制的《深圳河湾流域综合治理方案编制》。
    (1)张锡辉,陶益,盛盈,等.深圳河水质臭气监测评估及生态调查.清华大学深圳研究生院, 2016
    (1)同321页脚注。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700