用户名: 密码: 验证码:
W/VO_2方形纳米柱阵列可调中红外宽频吸收器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable Mid-Infrared Broadband Absorber Based on W/VO_2 Square Nano-Pillar Array
  • 作者:黄雅琴 ; 李毅 ; 李政鹏 ; 裴江恒 ; 田蓉 ; 刘进 ; 周建忠 ; 方宝英 ; 王晓华 ; 肖寒
  • 英文作者:Huang Yaqin;Li Yi;Li Zhengpeng;Pei Jiangheng;Tian Rong;Liu Jin;Zhou Jianzhong;Fang Baoying;Wang Xiaohua;Xiao Han;School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology;Shanghai Key Laboratory of Modern Optical System;School of Electric and Information, Shanghai University of Electric Power;College of Medical Imaging, Shanghai University of Medicine & Health Sciences;
  • 关键词:光学器件 ; 可调控吸收器 ; 时域有限差分 ; 宽波段 ; VO_2
  • 英文关键词:optical device;;tunable absorber;;finite difference time domain;;broadband;;VO_2
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:上海理工大学光电信息与计算机工程学院;上海市现代光学系统重点实验室;上海电力大学电子与信息工程学院;上海健康医学院医学影像学院;
  • 出版日期:2018-11-13 10:55
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:国家“863”计划(2006AA03Z348);; 教育部科学技术研究重点项目(207033);; 上海市科学技术委员会科技攻关计划(06DZ11415);; 上海市教育委员会科研创新计划重点项目(10ZZ94);; 上海市领军人才培养计划(2011-026)
  • 语种:中文;
  • 页:GXXB201903035
  • 页数:7
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:301-307
摘要
基于VO_2的热致相变特性,仿真设计出了一种W/VO_2方形纳米柱阵列可调中红外宽频吸收器,通过时域有限差分法分析了结构参数对吸收性能和结构内电磁场强度分布的影响,以及吸收器在不同偏振态和入射角度下的吸收特性。结果表明:在最佳的结构参数下,当VO_2未发生相变时,入射到吸收器的红外光转变为热而消耗掉,在3~5μm谱段的平均吸收率高达96.2%;当VO_2发生相变而转变为金属相时,吸收器表现出强反射,抑制吸收,高低温下的平均吸收率差可达74.1%。该吸收器的吸收率受入射光的影响较小,具有广角吸收特性,有望在红外智能光电领域得到应用。
        Based on the thermochromic phase transition characteristics of VO_2, a tunable mid-infrared broadband absorber with a W/VO_2 square nano-pillar array is designed. The influences of structural parameters on the absorption performances and the electromagnetic field intensity distributions within the structure, and the absorption characteristics of the absorber under different polarization states and incident angles are analyzed by the finite difference time domain method. The results show that the infrared light incident on the absorber is converted into heat and consumed when VO_2 does not undergo the phase transition, and the average absorptivity of the absorber in 3-5 μm wavelength region is as high as 96.2% under the optimal structural parameters. In contrast, the absorber exhibits a strong reflection and inhibits light absorption when the phase of VO_2 is changed into a metallic state, and the average absorptivity difference between high and low temperatures can reach 74.1%. The absorptivity of the absorber is less affected by the incident lasers with different polarization states and has wide-angle absorption characteristics, so the absorber is expected to be applied in the field of infrared intelligent optoelectronics.
引文
[1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.
    [2] Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001. 孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.
    [3] Hao H G, Ding T Y, Luo W, et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061604. 郝宏刚, 丁天玉, 罗伟, 等. 基于超材料的新型宽带微波吸波器设计[J]. 激光与光电子学进展, 2018, 55(6): 061604.
    [4] Han H, Wu D W, Liu J J, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003. 韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.
    [5] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.
    [6] Kuznetsov S A, Paulish A G, Gelfand A V, et al. Matrix structure of metamaterial absorbers for multispectral terahertz imaging[J]. Progress in Electromagnetics Research, 2012, 122: 93-103.
    [7] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 2010, 104(20): 207403.
    [8] Kuznetsov S A, Paulish A G, Gelfand A V, et al. Bolometric THz-to-IR converter for terahertz imaging[J]. Applied Physics Letters, 2011, 99(2): 023501.
    [9] Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001. 朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.
    [10] Chen X, Xue W R, Zhao C, et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 2018, 38(1): 0123002. 陈曦, 薛文瑞, 赵晨, 等. 基于LiF和NaF的超宽带红外吸收器[J]. 光学学报, 2018, 38(1): 0123002.
    [11] Ullah H, Khan A D, Noman M, et al. Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array[J]. Plasmonics, 2018, 13(2): 591-597.
    [12] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006.
    [13] Xie T, Chen Z, Ma R Y, et al. A wide-angle and polarization insensitive infrared broadband metamaterial absorber[J]. Optics Communications, 2017, 383: 81-86.
    [14] Bouchon P, Koechlin C, Pardo F, et al. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas[J]. Optics Letters, 2012, 37(6): 1038-1040.
    [15] Yang J, Qu S, Ma H, et al. Broadband infrared metamaterial absorber based on anodic aluminum oxide template[J]. Optics Laser Technology, 2018, 101: 177-182.
    [16] Popuri S R, Artemenko A, Decourt R, et al. Presence of Peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure-property relationship study[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6601-6609.
    [17] Wu Z Y, Li Y, Chen P Z, et al. Design of tunable infrared absorber based on Au/VO2 nanostructures[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 694-700. 伍征义, 李毅, 陈培祖, 等. 基于Au/VO2纳米结构的可调控红外吸收器设计[J]. 红外与毫米波学报, 2016, 35(6): 694-700.
    [18] Liang J R, Hou L H, Li J P. Frequency tunable perfect absorber in visible and near-infrared regimes based on VO2 phase transition using planar layered thin films[J]. Journal of the Optical Society of America B, 2016, 33(6): 1075-1080.
    [19] Liu Z M, Li Y, Zhang J, et al. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films[J]. Journal of Physics D: Applied Physics, 2017, 50(38): 385104.
    [20] Wang W, Qu Y R, Du K K, et al. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-?″ metals[J]. Applied Physics Letters, 2017, 110(10): 101101.
    [21] Wang H F, Li Y, Yu X J, et al. Study on temperature dependence of infrared optical properties of vanadium dioxide thin film[J]. Acta Optica Sinica, 2010, 30(5): 1522-1526. 王海方, 李毅, 俞晓静, 等. 二氧化钒薄膜的变温红外光学特性研究[J]. 光学学报, 2010, 30(5): 1522-1526.
    [22] Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.
    [23] Chiu C W, Cheng C W, Lai K T, et al. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays[J]. Optics Express, 2012, 20(9): 10376-10381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700