用户名: 密码: 验证码:
直接Z-型立方/六方ZnIn_2S_4复合光催化剂的制备及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn_2S_4 Composite Catalysts
  • 作者:陈顺生 ; 李少珍 ; 罗晓婧 ; 王国宏
  • 英文作者:CHEN Shunsheng;LI Shaozhen;LUO Xiaojing;WANG Guohong;School of Mathematics and Physics,Hubei Polytechnic University;Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices,Faculty of Physics & Electronic Science,Hubei University;College of Mathematics and Physics,Shanghai University of Electric Power;Hubei Collaborative Innovation Center for Rare Metal Chemistry,Hubei Normal University;
  • 关键词:无机非金属材料 ; 可见光催化降解 ; 水热法 ; 直接Z-型复合光催化 ; 复合相ZnIn2S4
  • 英文关键词:inorganic non-metallic materials;;visible-light photocatalytic degradation;;hydrothermal method;;direct Z-scheme composite photocatalyst;;ZnIn2S4 composite catalysts
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:湖北理工学院数理学院;湖北大学物理与电子科学学院铁电压电材料与器件湖北省重点实验室;上海电力学院数理学院;湖北师范大学湖北省稀有金属化学协同创新中心;
  • 出版日期:2019-02-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(11504227,51302074,11374147)~~
  • 语种:中文;
  • 页:CYJB201902010
  • 页数:10
  • CN:02
  • ISSN:21-1328/TG
  • 分类号:67-76
摘要
通过水热反应方法制备出立方相ZnIn_2S_4和六方相ZnIn_2S_4和系列不同摩尔比的复合相ZnIn_2S_4光催化剂,使用X射线衍射、扫描电子显微镜、电子能谱、透射电子显微镜、光致发光光谱、N2吸附-脱附法及紫外-可见光漫反射等手段表征了样品的晶体结构、显微结构及吸光特性并在可见光照射下进行了甲基橙降解实验。结果表明,复合相ZnIn_2S_4样品都具有比立方相、六方相和机械混合的ZnIn_2S_4更好的可见光催化活性,当复合相ZnIn_2S_4样品中立方相与六方相摩尔比为3:7时体系的催化活性最高。这种样品被可见光照射30 min后,甲基橙的降解率达到95.2%。其降解机理与样品较大的比表面积以及样品中的立方相与六方相之间的密切接触而形成直接Z-型光催化过程有关。
        Photocatalysts of cubic ZnIn_2S_4 and hexagonal ZnIn_2S_4 as well as a series of Cubic ZnIn_2S_4/hexagonal ZnIn_2S_4 composite with different molar ratios were synthesized via hydrothermal method. The crystal structure, microstructure and optical absorption property of the as-synthesized photocatalysts were characterized by means of X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, photoluminescence spectrometer, Brunauer-Emmett-TeIler analysis and UV-visible diffuse reflectance spectroscopy. The photocatalytic activities of the prepared photocatalysts were evaluated through photocatalytic degradation of methyl orange under visible-light irradiation. Results show that all the composite photocatalysts have much better photocatalytic activity than that of the catalysts of cubic ZnIn_2S_4 and hexagonal ZnIn_2S_4 as well as the mechanically mixed ZnIn_2S_4 of the above two pure catalysts; Among others, the composite with more ratio 3:7 for cubic ZnIn_2S_4 to hexagonal ZnIn_2S_4 presents the highest photocatalytic activity with degradation efficiency for methyl orange up to 95.2% under visiblelight irradiation for 30 minutes. This property can be attributed to the much larger specific surface areas and a direct Z-scheme photocatalytic process due to the close contact of cubic ZnIn_2S_4 and hexagonal ZnIn_2S_4 produced by the hydrothermal synthesis process.
引文
[1]Carey J H,Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J].Bull.Environ.Contaminat.Toxicol.,1976,16:697
    [2]Zhang C,Wu Z J,Liu J J,et al.Preparation of MoS2/TiO2composite catalyst and its photocatalytic hydrogen production activity under UV irradiation[J].Acta Phys.Chim.Sin.,2017,33:1492(张驰,吴志娇,刘建军等.MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J].物理化学学报,2017,33:1492)
    [3]Zhang J F,Zhou P,Liu J J,et al.New understanding of the difference of photocatalytic activity among anatase,rutile and brookite TiO2[J].Phys.Chem.Chem.Phys.,2014,16:20382
    [4]Zhang J,Wu W C,Yan S,et al.Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2modified with Gd2O3calcined at high temperature[J].Appl.Surf.Sci.,2015,344:249
    [5]Meng A Y,Zhang J,Xu D F,et al.Enhanced photocatalytic H2-production activity of anatase TiO2nanosheet by selectively depositing dual-cocatalysts on{101}and{001}facets[J].Appl.Catal.,2016,198B:286
    [6]Papailias I,Todorova N,Giannakopoulou T,et al.Photocatalytic activity of modified g-C3N4/TiO2nanocomposites for NOxremoval[J].Catal.Today,2017,280:37
    [7]Ren H T,Yang Q.Fabrication of Ag2O/TiO2with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method[J].Appl.Surf.Sci.,2017,396:530
    [8]Ma L N,Wang G H,Jiang C J,et al.Synthesis of core-shell TiO2@g-C3N4hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light[J].Appl.Surf.Sci.,2018,430:263
    [9]Chen S S,Li S Z,Xiong L B,et al.In-situ growth of ZnIn2S4decorated on electrospun TiO2nanofibers with enhanced visible-light photocatalytic activity[J].Chem.Phys.Lett.,2018,706:68
    [10]Low J X,Cheng B,Yu J G.Surface modification and enhanced photocatalytic CO2reduction performance of TiO2:a review[J].Appl.Surf.Sci.,2017,392:658
    [11]Ouyang W X,Teng F,Fang X S.High performance BiOCl nanosheets/TiO2nanotube arrays heterojunction UV photodetector:the influences of self-induced inner electric fields in the BiOCl Nanosheets[J].Adv.Funct.Mater.,2018,28:1707178
    [12]Zhong J B,Li J Z,Zeng J,et al.Enhanced photocatalytic activity of In2O3-decorated TiO2[J].Appl.Phys.,2014,115A:1231
    [13]Zalfani M,Hu Z Y,Yu W B,et al.BiVO4/3DOM TiO2nanocomposites:effect of BiVO4as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants[J].Appl.Catal.,2017,205:121
    [14]Li L L,Cheng B,Wang Y X,et al.Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2composite nanofibers[J].J.Colloid Interf.Sci.,2015,449:115
    [15]Xiang Q J,Yu J G,Jaroniec M.Synergetic effect of MoS2and graphene as cocatalysts for enhanced photocatalytic H2 production activity of Ti O2nanoparticles[J].J.Am.Chem.Soc.,2012,134:6575
    [16]Gao H Z,Wang H E,Jin Y L,et al.Controllable fabrication of immobilized ternary CdS/Pt-TiO2heteronanostructures toward highperformance visible-light driven photocatalysis[J].Phys.Chem.Chem.Phys.,2015,17:17755
    [17]Ai G J,Mo R,Chen Q,et al.Ti O2/Bi2S3core-shell nanowire arrays for photoelectrochemical hydrogen generation[J].RSC Adv.,2015,5:13544
    [18]Zhang Z Y,Liu K C,Feng Z Q,et al.Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4heterostructure with highly efficient photocatalytic H2production based on photoinduced interfacial charge transfer[J].Sci.Rep.,2016,6:19221
    [19]Zhang D Y,Zhang Y H,Luo Y S,et al.High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel[J].Nano Res.,2018,11:1651
    [20]Wang P,Wang J,Wang X F,et al.One-step synthesis of easy-recycling TiO2-r GO nanocomposite photocatalysts with enhanced photocatalytic activity[J].Appl.Catal.,2013,132-133B:452
    [21]Romeo N,Dallaturca A,Braglia R,et al.Charge storage in ZnIn2S4single crystals[J].Appl.Phys.Lett.,1973,2:21
    [22]Mahadik M A,Shinde P S,Cho M,et al.Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2heterostructure photoanode for enhanced photoelectrochemical performance[J].Appl.Catal.,2016,184B:337
    [23]Liu H,Jin Z T,Xu Z Z,et al.Fabrication of ZnIn2S4-g-C3N4sheeton-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants[J].RSC Adv.,2015,5:97951
    [24]Parmeggiani C,Cardona F.Transition metal based catalysts in the aerobic oxidation of alcohols[J].Green Chem.,2012,14:547
    [25]Yuan Y J,Tu J R,Ye Z J,et al.MoS2-graphene/ZnIn2S4hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst:A highly efficient photocatalyst for solar hydrogen generation[J].Appl.Catal.,2016,188:13
    [26]Qiu P X,Yao J H,Chen H,et al.Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4photocatalyst[J].J.Hazard.Mater.,2016,317:158
    [27]Chen Z X,Xu J J,Ren Z Y,et al.Low temperature synthesis of ZnIn2S4microspheres as a visible light photocatalyst for selective oxidation[J].Catal.Commun.,2013,41:83
    [28]Chai B,Peng T Y,Zeng P,et al.Preparation of a MWCNTs/ZnIn2S4composite and its enhanced photocatalytic hydrogen production under visible-light irradiation[J].Dalton Trans.,2012,41:1179
    [29]Shang L,Zhou C,Bian T,et al.Facile synthesis of hierarchical ZnIn2S4submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2production[J].J.Mater.Chem.,2013,1A:4552
    [30]Chai B,Peng T Y,Zeng P,et al.Template-free hydrothermal synthesis of ZnIn2S4floriated microsphere as an efficient photocatalyst for H2production under visible-light irradiation[J].J.Phys.Chem.,2011,115C:6149
    [31]Shen J,Zai J T,Yuan Y P,et al.3D hierarchical ZnIn2S4:the preparation and photocatalytic properties on water splitting[J].Int.J.Hydrogen Energy,2012,37:16986
    [32]Gou X L,Cheng F Y,Shi Y H,et al.Shape-controlled synthesis of ternary chalcogenide ZnIn2S4and CuIn(S,Se)2nano-/microstructures via facile solution route[J].J.Am.Chem.Soc.,2006,128:7222
    [33]Li Y X,Wang J X,Peng S Q,et al.Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4under visible light irradiation[J].Int.J.Hydrogen Energy,2010,35:7116
    [34]Shen S H,Zhao L,Guo L J.ZnmIn2S3+m(m=1-5,integer):a new series of visible-light-driven photocatalysts for splitting water to hydrogen[J].Int.J.Hydrogen Energy,2010,35:10148
    [35]Song K L,Zhu R S,Tian F,et al.Effects of indium contents on photocatalytic performance of ZnIn2S4for hydrogen evolution under visible light[J].J.Solid State Chem.,2015,232:138
    [36]Su L,Ye X J,Meng S G,et al.Effect of different solvent on the photocatalytic activity of ZnIn2S4for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation[J].Appl.Surf.Sci.,2016,384:161
    [37]Chen Y J,Hu S W,Liu W J,et al.Controlled syntheses of cubic and hexagonal ZnIn2S4nanostructures with different visible-light photocatalytic performance[J].Dalton Trans.,2011,40:2607
    [38]Peng S Q,Dan M,Guo F J,et al.Template synthesis of ZnIn2S4for enhanced photocatalytic H2evolution using triethanolamine as electron donor[J].Colloids Surf.,2016,504:18
    [39]Jo W K,Natarajan T S.Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide(ZnIn2S4)-graphitic carbon nitride(g-C3N4)/bismuth vanadate(BiVO4)nanorodbased ternary nanocomposites with enhanced charge separation via Z-scheme transfer[J].J.Colloid Interface Sci.,2016,482:58
    [40]Adhikari S,Charanpahari A V,Madras G.Solar-light-driven improved photocatalytic performance of hierarchical ZnIn2S4architectures[J].ACS Omega,2017,2:6926
    [41]Yang W,Chen D Z,Quan H Y,et al.Enhanced photocatalytic properties of ZnFe2O4doped ZnIn2S4Heterostructure under visible light irradiation[J].RSC Adv.,2016,6:83012
    [42]Chen Y J,He J,Li J J,et al.Hydrilla derived ZnIn2S4photocatalyst with hexagonal-cubic phase junctions:A bio-inspired approach for H2evolution[J].Catal.Commun.,2016,87:1
    [43]Xu F Y,Xiao W,Cheng B,et al.Direct Z-scheme anatase/rutile biphase nanocomposite TiO2nanofiber photocatalyst with enhanced photocatalytic H2-production activity[J].Intern.J.Hydrogen Energy,2014,39:15394
    [44]Li K,Han M,Chen R,et al.Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2with unprecedented stability[J].Adv.Mater.,2016,28:8906
    [45]Wang X,Xu Q,Li M R,et al.Photocatalytic overall water splitting promoted by anα-βphase junction on Ga2O3[J].Angew.Chem.,Int.Ed.Engl.,2012,51:13089
    [46]Wang J G,Chen Y J,Zhou W,et al.Cubic quantum dot/hexagonal microsphere ZnIn2S4heterophase junctions for exceptional visiblelight-driven photocatalytic H2evolution[J].J.Mater.Chem.,2017,5A:8451
    [47]Tian F,Zhu R S,Song K L,et al.The effects of amount of La on the photocatalytic performance of ZnIn2S4for hydrogen generation under visible light[J].Int.J.Hydrogen Energy,2015,40:2141
    [48]Hou J G,Yang C,Cheng H J,et al.Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4heterostructures for efficient photocatalytic H2production[J].Phys.Chem.Chem.Phys.,2013,15:15660
    [49]Fan B,Chen Z H,Liu Q,et al.One-pot hydrothermal synthesis of Ni-doped ZnIn2S4nanostructured film photoelectrodes with enhanced photoelectrochemical performance[J].Appl.Surf.Sci.,2016,370:252
    [50]Chen Z X,Li D Z,Zhang W J,et al.Photocatalytic degradation of dyes by ZnIn2S4microspheres under visible light irradiation[J].J.Phys.Chem.,2009,113C:4433
    [51]Shi W L,Lv H C,Yuan S L,et al.Synergetic effect of carbon dots as co-catalyst for enhanced photocatalytic performance of methyl orange on ZnIn2S4microspheres[J].Sep.Purif.Technol.,2017,174:282
    [52]Liu T T,Wang L,Lu X,et al.Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4:adsorption,active species,and pathways[J].RSC Adv.,2017,7:12292
    [53]Cui L F,Ding X,Wang Y G,et al.Facile preparation of Z-scheme WO3/g-C3N4composite photocatalyst with enhanced photocatalytic performance under visible light[J].Appl.Surf.Sci.,2017,391:202
    [54]Lu D,Zhang G K,Wen Z.Visible-light-driven g-C3N4/Ti3+-TiO2photocatalyst Co-exposed{001}and{101}facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI)reduction[J].Appl.Surf.Sci.,2015,358:223
    [55]Liu Q Q,Fan C Y,Tang H,et al.One-pot synthesis of g-C3N4/V2O5composites for visible light-driven photocatalytic activity[J].Appl.Surf.Sci.,2015,358:188
    [56]Chen Y J,Huang R K,Chen D Q,et al.Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4microspheres and cubic ZnIn2S4nanoparticles[J].ACSAppl.Mater.Interfaces,2012,4:2273
    [57]Li P,Li H J,Tu W G,et al.Photocatalytic application of Z-type system[J].Acta Phys.Sin.,2015,64:094209(李平,李海金,涂文广等.Z型光催化材料的研究进展[J].物理学报,2015,64:094209)
    [58]Zhou P,Yu J G,Jaroniec M.All-solid-state Z-scheme photocatalytic systems[J].Adv.Mater.,2014,26:4920
    [59]Zhang L P,Wang G H,Xiong Z Z,et al.Fabrication of flower-like direct Z-schemeβ-Bi2O3/g-C3N4photocatalyst with enhanced visible light photoactivity for rhodamine B degradation[J].Appl.Surf.Sci.,2018,436:162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700