用户名: 密码: 验证码:
基于纤维素纳米晶体的刺激响应功能材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in stimuli-responsive functional materials based on cellulose nanocrystals
  • 作者:丁春香 ; 潘明珠
  • 英文作者:DING Chun-xiang;PAN Ming-zhu;College of Materials Science and Engineering,Nanjing Forestry University;
  • 关键词:纤维素纳米晶体 ; 刺激 ; 响应 ; 功能材料 ; 复合材料
  • 英文关键词:cellulose nanocrystal;;stimuli;;responsiveness;;functional material;;composites
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:南京林业大学材料科学与工程学院;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:国家自然科学基金(31670556);; 南京林业大学杰出青年项目(NLJQ2015-02)
  • 语种:中文;
  • 页:CLGC201901006
  • 页数:10
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:36-45
摘要
纤维素纳米晶体(cellulose nanocrystal, CNC)具备高强度、高模量、结构可控、易于表面修饰、生物相容性、生物可降解性,在刺激响应功能材料的设计组装过程中扮演着越来越重要的角色。作为一类具有"智能"行为的大分子体系,刺激响应功能材料在受到外部环境的刺激时,能够做出灵敏响应,体现出设定的相应功能,CNC的引入不仅能够调控其力学性能,表面存在的羟基、羧基也为丰富材料的刺激响应源提供了便捷途径。本文从CNC的化学结构切入,介绍了CNC的特性及其构建的刺激响应功能材料的合成思路,并以刺激"开关"为主线,重点介绍了基于CNC的水、pH、热、光单一或多重刺激响应功能材料的研究进展,最后指出,提高纤维素纳米晶体表面修饰改性效率,拓宽多重刺激响应性,实现高性能的基于纤维素纳米晶体的多重刺激响应功能材料的制备是未来该领域的研究重点。
        Cellulose nanocrystal(CNC) plays a more and more important role in the process of designing and assembly of functional materials, due to its high strength and modulus, controllable structure, feasible modification, biocompatibility and biodegradability. As a kind of macromolecule system with "intelligent" behavior, the stimuli-responsively functional materials make a sensitive response when stimulated by the external environment, and show the corresponding function. With the addition of CNCs, not only the mechanical properties of CNC-based functional materials are greatly improved, but also the hydroxyl and carboxyl groups on the surface of CNCs provide a convenient way to enrich the stimulus response source of these functional materials. Herein, combining with the chemical structure of CNC, the synthesis of CNC-based stimuli-responsive functional materials was comprehensively summarized. Meanwhile, the recent developments of single or multiple stimuli-responsive functional materials based on CNCs, such as water-, thermal-, pH-, light-responsive functional materials were summarized, with the stimulate switch taken as the main line. Finally, it was pointed out that future research would focus on improving the surface-modification efficiency of CNC, and broadening multi-stimulus responsiveness of CNC-based functional materials. The preparation of CNC-based functional materials with high performances will be significant in the future research as well.
引文
[1] LANG F, BUSCH G L, RITTER M, et al. Functional significance of cell volume regulatory mechanisms[J]. Physiological Reviews, 1998, 78(1): 247-306.
    [2] IBRIC S, PAROJCIC J, MRHAR A. From smart materials to advanced drug delivery systems[J]. International Journal of Pharmaceutics, 2017, 533(2): 323.
    [3] COUKOUMA, A E, ASHER S A. Increased volume responsiveness of macroporous hydrogels[J]. Sensors and Actuators B-Chemical, 2018, 255: 2900-2903.
    [4] MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014, 47(7): 1971-1981.
    [5] 赵稼祥. 先进复合材料的发展与展望[J]. 材料工程, 2000(10): 40-44, 48. ZHAO J X. Development and prospect of advanced composite materials [J]. Journal of Materials Engineering, 2000(10): 40-44, 48.
    [6] LU Y, SUN W J, GU Z. Stimuli-responsive nanomaterials for therapeutic protein delivery[J]. Journal of Controlled Release, 2014, 194: 1-19.
    [7] ISLAM R M, GAO Y F, LI X, et al. Stimuli-responsive polymeric materials for human health application[J]. Chinese Science Bulletin, 2014, 59(32): 4237-4255.
    [8] EICHHORN S J, DUFRESNE A, ARANGUREN M, et al. Review: current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33.
    [9] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500.
    [10] NISHIYAMA Y. Structure and properties of the cellulose microfibril[J]. Journal of Wood Science, 2009, 55(4): 241-249.
    [11] 潘明珠,连海兰. 生物质纳米材料的制备及其功能应用[M]. 北京:科学出版社, 2016: 130-136. PAN M Z, LIAN H L. Function and application of nano-materials based on biomass[M]. Beijing: Science Press, 2016: 130-136.
    [12] ?TURCOVá A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules, 2005, 6(2): 1055-1061.
    [13] MAHMOUD K A, MENA J A, MALE K B, et al. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2924-2932.
    [14] DONG S, CHO H J, LEE Y W, et al. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting[J]. Biomacromolecules, 2014, 15(5): 1560-1567.
    [15] SAMUEL J, STRINKOVSKI A, SHALOM S, et al. Miniaturization of organically doped sol-gel materials: a microns-size fluorescent pH sensor[J]. Materials Letters, 1994, 21(5/6): 431-434.
    [16] ROY S G, HALDAR U, DE P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 4233-4241.
    [17] PATIL N, SONI J, GHOSH N, et al. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy) ethyl methacrylate): deswelling kinetics probed by quantitative mueller matrix polarimetry[J]. Journal of Physical Chemistry B, 2012, 116(47): 13913-13921.
    [18] SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128.
    [19] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113.
    [20] HUBBE M A, ROJAS O J, LUCIA L A, et al. Cellulosic nanocomposites: a review[J]. BioResources, 2008, 3(3): 929-980.
    [21] SIRó I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose, 2010, 17(3): 459-494.
    [22] 黄进,林宁,彼得·张荣贵,等. 生物基聚多糖纳米晶-化学及应用[M]. 北京:化学工业出版社, 2014: 209-219. HUANG J, LIN N, CHANG P R,et al. Bio-based polysaccharide nanocrystals-chemistry and application[M]. Beijing: Chemical Industry Press, 2014: 209-219.
    [23] SIQUEIRA G, BRAS J, DUFRESNE A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites[J]. Biomacromolecules, 2009, 10(2): 425-432.
    [24] BECK-CANDANEDO S, ROMAN M, GRAY D. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions[J]. Biomacromolecules, 2005, 6(2): 1048-1054.
    [25] AKIRA I, TSUGUYUKI S, HAYAKA F. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-81.
    [26] 戴磊,龙柱,张丹. TEMPO氧化纤维素纳米纤维的制备及应用研究进展[J]. 材料工程, 2015, 43(8): 84-91. DAI L, LONG Z, ZHANG D. Research progress in preparation and application of TEMPO-oxidized cellulose nanofibers[J]. Journal of Materials Engineering, 2015, 43(8): 84-91.
    [27] 徐雁. 功能性无机-晶态纳米纤维素复合材料的研究进展与展望[J]. 化学进展, 2011, 23(11): 2183-2199. XU Y. Functional inorganic-cellulose hybrid nanocomposites[J]. Progress in Chemistry, 2011, 23(11): 2183-2199.
    [28] LIN N, DUFRESNE A. Nanocellulose in biomedicine: current status and future prospect[J]. European Polymer Journal, 2014, 59: 302-325.
    [29] GIESE M, BLUSCH L K, KHAN M K, et al. Functional materials from cellulose-derived liquid-crystal templates[J]. Angewandte Chemie Internation Edition, 2015, 54(10): 2888-2910.
    [30] WU X D, LU C H, HAN Y Y, et al. Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application[J]. Composites Science and Technology, 2016, 124: 44-51.
    [31] LU P, HSIEH Y L. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010, 82(2): 329-336.
    [32] ROMAN M, WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5: 1671-1677.
    [33] WINTER H T, CERCLIER C, DELORME N, et al. Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces[J]. Biomacromolecules, 2010, 11: 3144-3151.
    [34] HESS A E, CAPADONA J R, SHANMUGANATHAN K, et al. Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes[J]. Journal of Micromechanics and Microengineering, 2011, 21(5): 1-10.
    [35] SHANMUGANATHAN K, CAPADONA J R, ROWAN S J, et al. Stimuli-responsive mechanically adaptive polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2010, 2(1): 165-174.
    [36] MENDEZ J, ANNAMALAI P K, EICHHORN S J, et al. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect[J]. Macromolecules, 2011, 44(17): 6827-6835.
    [37] 杨倩丽,康晓明,孙静,等. 刺激响应性聚合物的设计、合成及其应用研究新进展[J]. 化工进展, 2015, 34(8): 3075-3098. YANG Q L, KANG X M, SUN J, et al. New progress in the design, synthesis and application of stimuli responsive polymers[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3075-3098.
    [38] SANNA R, FORTUNATI E, ALZARI V. Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels[J]. Cellulose, 2013, 20(5): 2393-2402.
    [39] NAVARRO-BAENA I, KENNY J M, PEPONI L. Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals[J]. Cellulose, 2014, 21(6): 4231-4246.
    [40] CALVERT P. Hydrogels for soft machines[J]. Advanced Materials, 2009, 21(7): 743-756.
    [41] YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators[J]. Advanced Functional Materials,2015, 25(20): 2980-2991.
    [42] ISLAM M R, LI X, SMYTH K, et al. Polymer-based muscle expansion and contraction[J]. Angewandte Chemie International Edition, 2013, 52(39): 10330-10333.
    [43] QIU X Y, HU S W. “Smart” materials based on cellulose: a review of the preparations, properties, and applications[J]. Materials, 2013, 6(3): 738-781.
    [44] GAO X Y, SADASIVUNI K K, KIM H C, et al. Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals[J]. Journal of Chemical Sciences, 2015, 127(6): 1119-1125.
    [45] SADASIVUNI K K, PONNAMMA D, KUMAR B, et al. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology[J]. Composites Science and Technology, 2014, 104(19): 18-25.
    [46] SADASIVUNI K K, CASTRO M, SAITER A, et al. Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications[J]. Materials Letters, 2013, 96(1): 109-112.
    [47] KAFY A, SADASIVUNI K K, KIM H C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5923-5931.
    [48] SADASIVUNI K K, SAITER A, GAUTIER N, et al. Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites[J]. Colloid and Polymer Science, 2013, 291(7): 1729-1740.
    [49] LI Y, CHEN H M, LIU D, et al. pH-responsive shape memory poly (ethylene glycol)-poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12988-12999.
    [50] SCHUMERS J M, FUSTIN C A, GOHY J F. Light-responsive block copolymers[J]. Macromolecular Rapid Communications, 2010, 31(18): 1588-1607.
    [51] SEO J W, CHUNG J W, KWON J E, et al. Photoisomerization-induced gel-to-sol transition and concomitant fluorescence switching in a transparent supramolecular gel of a cyanostilbene derivative[J]. Chemical Science, 2014, 5(12): 4845-4850.
    [52] FOX J D, CAPADONA J R, MARASCO P D, et al. Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak[J]. Journal of the American Chemical Society, 2013, 135(13): 5167-5174.
    [53] BIYANI M V, FOSTER E J, WEDER C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS Macro Letters, 2013, 2(3): 236-240.
    [54] BIYANI M V, JORFI M, WEDER C, et al. Light-stimulated mechanically switchable, photopatternable cellulose nanocomposites[J]. Polymer Chemistry, 2014, 5(19): 5716-5724.
    [55] LIU Y, LI Y, YANG G, et al. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals[J]. ACS Applied Materials and Interfaces, 2015, 7(7): 4118-4126.
    [56] ZHAO L, LI W, PLOG A, et al. Multi-responsive cellulose nanocrystal-rhodamine conjugates: an advanced structure study by solidstate dynamic nuclear polarization (DNP) NMR[J]. Physical Chemistry Chemical Physics, 2014, 16(47): 26322-26329.
    [57] WANG Y G, HEIM L O, XU Y P, et al. Transparent, stimuli-responsive films from cellulose-based organogel nanoparticles[J]. Advanced Functional Materials, 2015, 25(9): 1434-1441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700