用户名: 密码: 验证码:
刺槐根际变形杆菌的分离和去除重金属的性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation of a Heavy Metal Tolerant Strain Proteus sp. Ch-8 From the Rhizosphere of Robinia pseudoacacia L. and Its Characteristics to Remove Heavy Metals
  • 作者:张轩 ; 闫紫微 ; 黄忠良 ; 冯冲凌 ; 刘先利 ; 朱艺 ; 吴子剑 ; 黄兢 ; 覃晓莉 ; 李辉
  • 英文作者:ZHANG Xuan;YAN Ziwei;HUANG Zhongliang;FENG Chongling;LIU Xianli;ZHU Yi;WU Zijian;HUANG Jing;QIN Xiaoli;LI Hui;Hunan Academy of Forestry;Central South University of Forestry Science and Technology;College of Environment Science and Engineering, Hubei Polytechnic University;
  • 关键词:根际土壤微生物 ; 刺槐 ; 变形杆菌 ; ; ; ; 重金属去除率
  • 英文关键词:rhizospheric microbes;;Robinia pseudoacacia L.;;Proteus spp.;;cadmium;;lead;;zinc;;heavy metal removal rate
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:湖南省林业科学院;中南林业科技大学;湖北理工学院环境科学与工程学院;
  • 出版日期:2019-03-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:湖北省技术创新专项(2016ACA176);; 矿区环境污染控制与修复湖北省重点实验室开放基金(2016102);; 湖南省科技重大专项(2016NK1001);; 湖南省科技厅重点研发计划(2016SK2045,2017SK2351,2017SK2383);; 长沙市科技计划(kq1606025,kh1701110,kq1707007);; 湖南省林业厅林业科技计划项目(XLK201701)
  • 语种:中文;
  • 页:FJKS201903011
  • 页数:10
  • CN:03
  • ISSN:42-1245/X
  • 分类号:86-95
摘要
变形杆菌在重金属污染等毒害环境中有着超强的代谢能力和环境适应性,不仅是许多污染环境的优势菌群,还能耐受和利用重金属及其他环境毒素作为自身能量和营养来源。它可以通过生物转化改变重金属离子状态,减轻重金属对环境的毒害,同时帮助植物增强重金属抗性,提升对重金属的吸附能力,但对于其作为环境土著菌在重金属土壤污染修复中的研究甚少。该研究通过对重金属复合污染的尾矿库中木本植物的重金属含量和富集水平测定,筛选出了镉超富集刺槐,并通过生理生化特征及重金属去除等实验于刺槐根际筛选出一株耐镉、锌、铅的变形杆菌(Proteus sp.)Ch-8,其对Cd~(2+)、Pb~(2+)、Zn~(2+)的最小抑菌浓度(MIC)分别达到了2800、1500和900 mg/L。实验结果还表明,在多离子共存的环境下,该菌对Cd、Pb、Zn的去除能力尤为突出:重金属离子初始浓度为200~400 mg/L,Cd~(2+)、Pb~(2+)、Zn~(2+)的去除率仍能达到64.5%、90%和74.1%,为开发变形杆菌作为重金属污染生物修复新材料,进一步探究其与超富集植物的协同作用提供了数据参考。
        Proteus can change the state of heavy metal ions through biological transformation, reduce the toxicity of heavy metals to the environment, and help plants enhance the resistance to heavy metals and the adsorption capacity of heavy metals.However, only a few researches concerned about the remediation of heavy metal contaminated soil by bacteria of Proteus genera. In this study, Proteus sp. Ch-8, a strain resistant to cadmium, zinc and lead was isolated from the rhizosphere of Robinia pseudoacacia L. at a composite heavy metal tailing. Its physicochemical characteristics and the effect of heavy metal removal were further tested. The tolerance of Cd~(2+), Pb~(2+) and Zn~(2+)measured by the minimum inhibitory concentration(MIC) method reached 2800 mg/L, 1500 mg/L and 900 mg/L respectively. The removal rates of Cd~(2+), Pb~(2+) and Zn~(2+)reached 64.5%, 90% and 74.1% respectively, with a high level compared to the current researches. This study laid a foundation for the engineering application of Proteus sp. Ch-8 as a bioremediation new material and for the further research on the synergistic remediation effects of hyperaccumulators and microbes.
引文
[1]Sobariu D L,Fertu A I T,Diaconu M,et al.Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation[J].New Biotechnology,2017,39(A):125-134.
    [2]丁巧蓓,晁元卿,王诗忠,等.根际微生物群落多样性在重金属土壤修复中的研究[J].华南师范大学学报:自然科学版,2016,48(2):1-12.Ding Qiaobei,Chao Yuanqing,Wang Shizhong,et al.Research on function of rhizosphere microbial diversity in phytoremediation of heavy metal polluted soils[J].Journal of South China Normal University:Natural Science Edition,2016,48(2):1-12.
    [3]高宇,程潜,张梦君,等.镉污染土壤修复技术研究[J].生物技术通报,2017,33(10):103-110.Gao Yu,Cheng Qian,Zhang Mengjun,et al.Research advance on remediation technology of cadmium contaminated soil[J].Biotechnology Bulletin,2017,33(10):103-110.
    [4]刘志培,刘双江.我国污染土壤生物修复技术的发展及现状[J].生物工程学报,2015,31(6):901-916.Liu Zhipei,Liu Shuangjiang.Development of bioremediation in China:a review[J].Biotech,2015,31(6):901-916.
    [5]邓平香.Cd污染下两种生态型东南景天内生细菌多样性的比较[D].广州:华南农业大学,2016.Deng Pingxiang.Comparative Analysis of Endophytic Bacteria Communities in Two Ecotypes of Sedum alfredii[D].Guangzhou:South China Agricultural University,2016.
    [6]王丽华,吕铮,郝春博,等.某石油污染场地地下水中降解菌群落结果研究[J].环境科学与技术,2013,36(7):1-8.Wang Lihua,Lyu Zheng,Hao Chunbo,et al.Degrading bacteria community structure in groundwater of a petroleumcontaminated site[J].Environmental Science&Technology,2013,36(7):1-8.
    [7]陈诚,赵珂,李小林,等.镍矿区紫茎泽兰根际及内生菌多样性研究[J].四川大学学报,2015,52(6):1387-1395.Chen Cheng,Zhao Ke,Li Xiaolin,et al.Diversity of rhizopheric and entophytic bacteria of Eupatorium adeno phorum in nickel mine[J].Journal of Sichuan University,2015,52(6):1387-1395.
    [8]辜运富,江华明,潘丁键,等.四川汉源万顺铅锌矿区蜈蚣草共附生细菌群落结构对重金属的响应特征[J].环境科学学报,2017,37(9):3535-3542.Gu Yunfu,Jiang Huaming,Pan Dingjian,et al.Response of symbiotic or epiphytic bacteria in Pteris vittata to heavy metals in a Pb-Zn mining area in Wanshun Village,Hanyuan County,Sichuan Province[J].Arta Scientiae Circumstance,2017,37(9):3535-3542.
    [9]Ge S,Dong X,Zhou J,et al.Comparative evaluations on bio-treatment of hexavalent chromate by resting cells of Pseudochrobactrum sp.and Proteus sp.in wastewater[J].Journal of Environment Management,2013,126:7-12.
    [10]Filali B K,Taoufik J,Zeroual Y,et al.Wastewater bacterial isolates resistant to heavy metals and antibiotics[J].Current Microbiology,2000,41:151-156.
    [11]Rani A,Shouche YS,Goel R,et al.Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain[J].Current Microbiology,2008,57:78-82.
    [12]Islam F,Yasmeen T,Riaz M,et al.Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize(Zea mays)plants[J].Ecotoxicology Environnment Safety,2014,110:143-152.
    [13]Rau N,Mishra V,Sharma M,et al.Evaluation of functional diversity in rhizobacterial taxa of a wild grass(Saccharum ravennae)colonizing abandoned fly ash dumps in Delhi urban ecosystem[J].Soil Biology Biochemistry,2009,41:813-821.
    [14]Billah M,Bano A,Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat[J].Waste Management and Research,2005,33(1):63-72.
    [15]Drzewiecka D.Significance and roles of Proteus spp.bacteria in natural environments[J].Microbial Ecology,2016,72:741-758.
    [16]Rolsona K R,Alkaisi M M.The importance of soil sampling depth for accurate account of soil organic carbon sequestration,storage,retention and loss[J].Catena,2015,2(125):33-37.
    [17]Zhang Y K,Hartermink A E.Sampling designs for soil organic carbon stock assessment of soil profiles[J].Geoderm,2017,12(307):220-230.
    [18]张轩,赵俊程,吴子剑,等.6种木本植物对铅锌尾矿库重金属富集力的研究[J].湖南林业科技,2016,43(6):64-68.Zhang Xuan,Zhao Juncheng,Wu Zijian,et al.Heavy metal transfer capability of 6 woody plants in lead-zinc mine area[J].Hunan Forestry Science&Technology,2016,43(6):64-68.
    [19]Wua Y P,Guo W B,Zha G B,et al.Isolation and identification of a novel LCI like antibacterial protein from Bacillus sp.MD-5 reveals its potential application in controlling Staphylococcus aureus in food industry[J].Food Control,2018,8(89):142-149.
    [20]Wu H Q,Wu Q P,Wu G J,et al.Cd-resistant strains of B.cereus S5 with endurance capacity and their capacities for cadmium removal from cadmium-pollute water[J].Plos One,2016(14):1-25.
    [21]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:北京科学出版社,2001.Dong Xiuzhu,Cai Miaoying.Manual for Systematic Identification of Common Bacteria[M].Beijing:Science Press,2001.
    [22]布坎南,吉本斯.伯杰细菌鉴定手册[M].第8版.北京:科学出版社,1984:362-366.Buchanan R E,Gibbons N E.Bergey's Manual of Determinative Bacteriology[M].8th edition.Beijing:Science Press,1984:362-366.
    [23]陈燚,陈浮,马静,等.荧蒽降解菌株的分离鉴定及降解特性研究[J].环境科学与技术,2018,41(3):23-29.Chen Yan,Chen Fu,Ma Jing,et al.Isolation and identification of a fluoranthene-degrading strain[J].Environmental Science&Technology,2018,41(3):23-29.
    [24]Banerjee G,Pandey S,Ray A K,et al.Bioremediation of heavy metals by a novel bacterial strain enter cloacae and its antioxidant enzyme activity,protein expression in presence of lead,cadmium,and nickel[J].Water Air and Soil Pollution,2015,10:91-92.
    [25]GB 15618-1995,土壤环境质量标准[S].GB 15618-1995,Environmental Quality Standard for Soils[S].
    [26]刘勇,王成军,刘华,等.铅锌冶炼厂周边重金属的空间分布及生态风险评价[J].环境工程学报,2015,9(1):477-484.Liu Yong,Wang Chengjun,Liu Hua,et al.Spatial distribution and ecological risk assessment of heavy metals in soil around a lead and zinc smelter[J].Chinese Journal of Environmental Engineering,2015,9(1):477-484.
    [27]黄小娟,江长胜,郝庆菊,等.重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J].生态学报,2014,34(15):4201-4211.Huang Xiaojuan,Jiang Changsheng,Hao Qingju,et al.Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mine of Chongqing[J].Acta Ecologica Sinica,2014,34(15):4201-4211.
    [28]Demrez D,Aksoy A.Accumulation of heavy metals in Typha angustifolia(L.)and Potamogeton pectinatus(L.)living in Sultan Marsh(Kayseri,Turkey)[J].Chemosphere,2004,56(7):685-696.
    [29]王晓娟,王文斌,杨龙,等.重金属镉(Cd)在植物体内的转运途径及其调控机制[J].生态学报,2015,35(23):7921-7929.Wang Xiaojuan,Wang Wenbin,Yang Long,et al.Transport pathways of cadmium(Cd)and its regulatory mechanisms in plant[J].Journal of Ecology,2015,35(23):7921-7929.
    [30]李冰,舒艳,李科,等.林人工湿地宽叶香蒲对重金属的累积与机理[J].环境工程学报,2016,10(4):2099-2108.Li Bing,Shu Yan,Li Ke,et al.Accumulation and mechanism of heavy metals in Typha latifolia L.in constructed wetland[J].Chinese Journal of Environmental Engineering,2016,10(4):2099-2108.
    [31]何东,邱波,彭尽晖,等.湖南下水湾铅锌尾矿库优势植物重金属含量及富集特征[J].环境科学学报,2013,34(9):3596-3598.He Dong,Qiu Bo,Peng Jinhui,et al.Heavy metal contents and enrichment characteristics of dominant plants in a leadzinc tailings in Xiashuiwan of Hunan Province[J].Journal of Environmental Science,2013,34(9):3596-3598.
    [32]王超,毕君,宋熙龙,等.6种植物对锌的耐受和富集能力[J].环境科学与技术,2014,37(S2):62-65.Wang Chao,Bi Jun,Song Xilong,et al.Study on the accumulation and tolerance of 6 plants to heavy metal Zn in soil[J].Environmental Science&Technology,2014,37(S2):62-65.
    [33]邱秀文,周桂香,杨期勇,等.一株嗜酸异养菌的分离鉴定及其重金属耐受性研究[J].环境科学与技术,2017,40(1):61-69.Qiu Xiuwen,Zhou Guixiang,Yang Qiyong,et al.Isolation,identification and heavy metal tolerance of an acidophilic heterotrophic microorganism[J].Environmental Science&Technology,2017,40(1):64-69.
    [34]Kassab D M,Roane T M.Differential responses of a mine tailings Pseudomonas isolate to cadmium and lead exposures[J].Biodegradation,2006,17:379-387.
    [35]魏本杰,曾晓希,刘志成,等.产铁载体菌的筛选鉴定及活化镉的性能探究[J].环境科学与技术,2014,37(11):26-31.Wei Benjie,Zeng Xiaoxi,Liu Zhicheng,et al.Isolation,identification and study on cadmium-mobilization ability of sidorophores-producing bacteria[J].Environmental Science&Technology,2014,37(11):26-31.
    [36]Limcharoensuk T,Sooksawat N,Sumarnrot A,et al.Bioaccumulation and biosorption of Cd2+and Zn2+by bacteria isolated from a zinc mine in Thailand[J].Ecotoxicology Environment Safety,2015,122:322-330.
    [37]Hossain S M,Anantharaman N.Studies on bacterial growth and lead biosorption using Bacillus subtilis[J].Indian Journal of Chemical Technology,2006,13:591-596.
    [38]Xu C,He S,Liu Y,et al.Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU[J].Chemosphere,2017(173):622-629.
    [39]Huang F,Dang Z,Guo C,et al.Biosorption of Cd(Ⅱ)by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J].Colloids and Surfaces B:Biointerfaces,2013(107):11-18.
    [40]Abbas S Z,Rafatullah M,Hossain K,et al.A review on mechanism and future perspectives of cadmium-resistant bacteria[J].International Journal of Environment Science and Technology,2017(14):1-20.
    [41]Naik M M,Dubey S K.Lead resistant bacteria:lead resistance mechanisms,their applications in lead bioremediation and biomonitoring[J].Ecotoxicology and Environmental Safety,2013(98):1-7.
    [42]Nies D H,Silver S.Ion efflux systems involved in bacterial metal resistance[J].Journal of Industrial Microbiology,1995,14:186-199.
    [43]Rensing C,Ghosh M,Rosen B P.Families of soft-metalion-transporting ATPases[J].Journal of Bacteriology,1999,181:5891-5897.
    [44]Blindauer C A,Harrison M D,Robinson A K.Multiple bacteria encode metallothioneins and SmtA-like fingers[J].Molecular Microbiology,2002,45:1421-1432.
    [45]Liu T,Nakashima S,Hirose K.A metallothionein and CPxATPase handle heavy-metal tolerance in the filamentous cyanobacteria Oscillatoria brevis[J].FEBS Letters,2003,542:159-163.
    [46]Chang J S,Law R,Chang C C.Biosorption of lead,copper and cadmium by biomass of Pseudomonas aeruginosa PU21[J].Water Research,1997,31:1651-1658.
    [47]Naik M M,Pandey A,Dubey S K.Biological characterization of lead enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B[J].Biodegradation,2012,23:775-783.
    [48]Naik M M,Dubey S K.Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA[J].Current Microbiology,2011,62:409-414.
    [49]游俏,袁兴中,曾光明,等.腐熟污泥对废水中Cd(Ⅱ)与Zn(Ⅱ)的吸附性能研究[J].环境工程学报,2011,5(1):1-6.You Qiao,Yuan Xingzhong,Zeng Guangming,et al.Study on absorption of Zn(Ⅱ)and Cd(Ⅱ)from aqueous solution using composted sludge as absorbent[J].Chinese Journal of Environmental Engineering,2011,5(1):1-6.
    [50]Huang J,Yuan F,Zeng G,et al.Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration[J].Chemosphere,2017(173):199-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700