用户名: 密码: 验证码:
改性多孔钢渣基橡胶复合材料制备机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation mechanism of modified porous steel slag-based rubber composite materials
  • 作者:张浩 ; 徐远迪 ; 方圆
  • 英文作者:Hao ZHANG;Yuandi XU;Yuan FANG;School of Civil Engineering and Architecture, Anhui University of Technology;Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology), Ministry of Education;
  • 关键词:钢渣 ; 橡胶 ; 制备机理 ; 力学性能
  • 英文关键词:steel slag;;rubber;;preparation mechanism;;mechanical properties
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:安徽工业大学建筑工程学院;冶金减排与资源综合利用教育部重点实验室(安徽工业大学);
  • 出版日期:2018-11-09 16:17
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:中国博士后科学基金资助项目(编号:2017M612051);; 冶金减排与资源综合利用教育部重点实验室(安徽工业大学)资助项目(编号:KF17-08);; 安徽省级大学生创新创业训练计划项目(编号:201710360213)
  • 语种:中文;
  • 页:HGYJ201902021
  • 页数:6
  • CN:02
  • ISSN:11-4541/TQ
  • 分类号:172-177
摘要
以磷酸与硅烷偶联剂KH550处理钢渣获得改性多孔钢渣,用其取代部分炭黑与橡胶复合制备改性多孔钢渣基橡胶复合材料,用傅立叶变换红外光谱仪表征多孔钢渣和改性多孔钢渣制备阶段生成物的组成结构,用X射线衍射仪表征不同制备阶段生成物的矿物组成。用比表面积与孔隙度吸附仪表征多孔钢渣的孔结构,从微观层面揭示复合材料的制备机理。依据相关国家标准对复合材料的拉伸强度、撕裂强度和邵尔A硬度进行测试。结果表明,适量磷酸在不破坏钢渣结构的前提下可有效去除钢渣中的大部分f-CaO,形成具有良好比表面积与孔体积的多孔钢渣。硅烷偶联剂KH550在多孔钢渣表面被吸附并与羟基发生化学作用,使多孔钢渣表面组成结构发生变化,改善其表面的无机特性。复合材料中橡胶与改性多孔钢渣以物理方式复合,橡胶对改性多孔钢渣包裹良好。硫化过程中橡胶内部线型大分子转变为三维网状结构,改性多孔钢渣中的Ca_2SiO_4发生水化反应形成Ca(OH)_2。
        Modified porous steel slag was obtained by treating steel slag with phosphoric acid and silane coupling agent KH550,and with it partially replaces carbon black and rubber to prepare modified porous steel slag-based rubber composite materials. Composition structure of substances in preparation stage of porous steel slag and modified porous steel slag were characterized and analyzed by fourier transform infrared spectrometer(FT-IR). Mineral composition of substances in different preparation stages were characterized and analyzed by X-ray diffractometer(XRD). Pore structure of porous steel slag was characterized and analyzed by brunauer-emmett-teller surfaceareas analyzer(BET) so as to preparation mechanism of composite materials was revealed from the micro level. Tensile strength, tear strength and Shore A hardness of composite materials were tested by referring to relative national standards GB/T 528-2009, GB/T 529-2008 and GB/T 531.1-2008. The results indicated that the suitable amount of phosphoric acid can effectively remove most of the f-CaO in the steel slag without damaging the steel slag structure, thus forming porous steel slag with good surface area and pore volume. The silane coupling agent KH550 was adsorbed on the surface of porous steel slag and chemically acted with the hydroxyl group, the surface composition of porous steel slag was changed to improve the surface inorganic properties of modified porous steel slag. The modified porous steel slag and rubber were combined by physical way in composite materials, and the rubber had a good effect on the modified porous steel slag. In the process of vulcanization, the inner rubber was transformed from a linear macromolecule to a three-dimensional network, and the hydration reaction of Ca_2SiO_4 in the modified porous steel slag formed Ca(OH)_2.
引文
[1]Kumar S,Kumar R,Bandopadhyay A,et al.Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement[J].Cement and Concrete Composites,2008,30(8):679-685.
    [2]Ramezanianpour A A,Kazemian A,Moghaddam M A,et al.Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes[J].Materials&Structures,2016,49(7):2597-2609.
    [3]Guetteche M N,Zergua A,Hannachi S.Investigating the local granulated blast furnace slag[J].Open Journal of Civil Engineering,2012,2(1):10-15.
    [4]Wang Q,Yan P,Mi G.Effect of bblended steel slag-GBFS mineral admixture on hydration and strength of cement[J].Construction&Building Materials,2012,35(10):8-14.
    [5]Zhuang P,Mcbride M B,Xia H,et al.Health risk from heavy metals via consumption of food crops in the vicinity of dabaoshan mine[J].Science of the Total Environment,2009,407(5):1551-1561.
    [6]Saria L,Shimaoka T,Miyawaki K.Leaching of heavy metals in acid mine drainage[J].Waste Management and Research,2006,24(2):134-140.
    [7]Navarro M C,Perez S C,Martinez S M J,et al.Abandoned mine sites as a source of contamination by heavy metals:a case study in a semi-arid zone[J].Journal of Geochemical Exploration,2008,96(2/3):183-193.
    [8]杨晋涛,范宏,卜志扬,等.蒙脱土填充补强丁苯橡胶及对橡胶硫化特性的影响[J].复合材料学报,2005,22(2):38-45.Yang J T,Fan H,Bu Z Y,et al.Montmorillonite reinforced sbr and effect on the vulcanization of rubber[J].Acta Materiae Compositae Sinica,2005,22(2):38-45.
    [9]Raza M A,Westwood A,Brown A,et al.Characterization of graphite nano platets and the physical properties of graphite nano platelets/silicone composite for thermal interface applications[J].Carbon,2011,49(13):4269-4279.
    [10]Chen L,Lu L,Wu D J,et al.Slicone rubber/graphite nanosheet electrically conducting nano composite with a low percolation threshold[J].Polymer Composites,2007,28(4):493-498.
    [11]顾恒星,李辉,程东波,等.基于傅里叶红外光谱的钢渣代炭黑环保型复合橡胶的补强机理及性能研究[J].光谱学与光谱分析,2017,37(4):1053-1057.Gu H X,Li H,Cheng D B,et al.Study on strengthening mechanism and performance of environmental protection composite rubber with steel slag instead of carbon black based on fourier transform infrared spectroscopy[J].Spectroscopy and Spectral Analysis,2017,37(4):1053-1057.
    [12]张浩,杨刚,龙红明,等.改性钢渣代炭黑环保型丁苯橡胶的制备及其性能[J].过程工程学报,2017,17(6):1299-1304.Zhang H,Yang G,Long H M,et al.Preparation of environmentally friendly styrene butadiene rubber with modified steel slag instead of carbon black and their properties[J].The Chinese Journal of Process Engineering,2017,17(6):1299-1304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700