用户名: 密码: 验证码:
裂隙岩体巷道围岩最大可动区域解算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on solution to the maximum movable region of the surrounding rock in fractured rock mass roadways
  • 作者:陈庆发 ; 秦世康 ; 尹庭昌
  • 英文作者:CHEN Qingfa;QIN Shikang;YIN Tingchang;School of Resources,Environment and Materials,Guangxi University;State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences;
  • 关键词:裂隙岩体 ; 巷道围岩 ; 可动区域 ; 关键块体理论 ; 一般块体理论
  • 英文关键词:fractured rock mass;;surrounding rock roadway;;movable region;;key block theory;;general block theory
  • 中文刊名:KSYL
  • 英文刊名:Journal of Mining & Safety Engineering
  • 机构:广西大学资源环境与材料学院;中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:采矿与安全工程学报
  • 年:2019
  • 期:v.36;No.143
  • 基金:国家自然科学基金青年科学基金项目(41402306);; 岩土力学与工程国家重点实验室课题项目(Z016015)
  • 语种:中文;
  • 页:KSYL201902004
  • 页数:8
  • CN:02
  • ISSN:32-1760/TD
  • 分类号:30-37
摘要
开展裂隙岩体巷道围岩最大可动区域解算研究,对于巷道安全开挖及长期使用具有重要意义。基于关键块体理论矢量运算求解方法,结合一般块体理论可限定结构面半径的独特优势,解决代表性结构面组选择问题,简化块体可动区域求解过程,形成一种快速准确确定裂隙岩体巷道围岩最大可动区域的研究方法。以广西铜坑矿92号矿体405m水平2~#盘区3~#裂隙凿岩道结构面数据为基础,利用所研发技术,开展复杂裂隙环境下巷道围岩最大可动区域解算研究的实例验证,计算结果表明:3~#凿岩道关键块体主要集中于拱形巷道断面左侧,开挖过程需重点进行左侧部位的支护,以保持围岩稳定。研究成果对于地下矿山裂隙岩体巷道围岩危险区域确定工作具有重要指导作用。
        Conducting the calculation study of the maximum movable region of the surrounding rock in fractured rock mass roadways is of great significance for the safe excavation and long-term use of roadways. Based on the vector operation method of the key block theory and the unique advantage of the general block theory(i.e., the discontinuity radius can be limited), the traditional determination method of representative discontinuities is improved; the solution procedure of block movable region is simplified; and a method in which the maximum movable region of the surrounding rock can be determined rapidly and accurately is developed. Finally, the method is applied to the real case(i.e., the 3#roadway of 2~# panel at the 405 m level of No.92 orebody in Tongkeng mine, Guangxi), and the results have shown that the key blocks of the 3~# roadway are mainly concentrated on the left side of the arched roadway section. In the excavation process, more support should be focused on the left side to keep the surrounding rock stable. In conclusion, this study may provide important guidance for the determination of the surrounding rock danger zones in fractured rock mass roadway of underground mines.
引文
[1]李长权,杨建中.井巷设计与施工[M].北京:冶金工业出版社,2008:11-29.
    [2]陈庆发,周永亮,安佳丽.复杂裂隙岩体环境下巷道轴线走向优化研究[J].岩石力学与工程学报,2014,33(增刊1):2735-2742.CHEN Qingfa,ZHOU Yongliang,AN Jiali.Study of optimization for axis strike of roadway under environment of complex fractured rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 1):2735-2742.
    [3]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996:27-42.
    [4]毕继红,丛蓉.各种形状洞室的围岩压力分析[J].地下空间,2004,24(1):23-26.BI Jihong,CONG Rong.Analysis on pressure of surrounding rock of tunnel with different shapes[J].Underground Space,2004,24(1):23-26.
    [5]于学馥,郑颖人,刘怀恒.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983:1-16.
    [6]RAJINDER B,EYSTEIN G.The use of stress-strength relationships in the assessment of tunnel stability[J].Tunneling and Underground Space Technology,1996,11(1):93-98.
    [7]SEEDSMAN R.The stress and failure paths followed by coal mine roofs during longwall extraction and implications to tailgate support[C]//20th International Conference on Ground Control in Mining.Morgantown,West Virginia University Press,2001:42-49.
    [8]杨军,孙晓明,王树仁.济宁2#煤深部回采巷道变形破坏规律及对策研究[J].岩石力学与工程学报,2009,28(11):2280-2285.YANG Jun,SUN Xiaoming,WANG Shuren.Study of deformation and failure laws of deep roadway and countermeasures in Jining coal mine NO.2[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(11):2280-2285.
    [9]明建,单强,严荣富.自然崩落法采场软破围岩巷道支护技术研究[J].采矿与安全工程学报,2014,31(1):34-40.MING Jian,SHAN Qiang,YAN Rongfu.Study on supporting technology for roadways of soft rock mass in natural caving method[J].Journal of Mining&Safety Engineering,2014,31(1):34-40.
    [10]牛少卿,杨双锁,李义,等.大跨度巷道顶板层面剪切失稳机理及支护方法[J].煤炭学报,2014,39(增刊2):325-331.NIU Shaoqing,YANG Shuangsuo,LI Yi,et al.Shear instability mechanism and support methods of laminated roof and floor strata in roadway[J].Journal of China Coal Society,2014,39(Sup 2):325-331.
    [11]陈庆发,牛文静,郑文师,等.崩落法回采巷道顶板危险区域确定的解构法和数值模拟法[J].中国有色金属学报,2017,27(5):1006-1015.CHEN Qingfa,NIU Wenjing,ZHENG Wenshi,et al.Deconstruction method and numerical simulation method of determination of tunnel roof’s dangerous area in caving stoping process[J].The Chinese Journal of Nonferrous Metals,2017,27(5):1006-1015.
    [12]石根华.岩体稳定分析的赤平投影方法[J].中国科学,1977(3):269-271.SHI Genhua.Serigraphic method of stability analysis of rock mass[J].Science in China,1977(3):269-271.
    [13]石根华.岩体稳定分析的几何方法[J].中国科学,1981(4):487-495.SHI Genhua.Geometric method of stability analysis of rock mass[J].Science in China,1981(4):487-495.
    [14]GOODMAN R E,SHI Genhua.Block theory and its application to rock engineering[M].New Jersey:Prentice Hall,Inc,1985:28-57.
    [15]刘锦华,吕祖晰.块体理论在工程岩体稳定分析中的应用[M].北京:水利电力出版社,1986:39-46.
    [16]于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M].北京:水利水电出版社,2007:1-20.
    [17]长沙矿山研究院.铜坑矿岩石物理力学性质与原岩应力场测定研究[M].南宁:广西华锡集团股份有限公司,2011:4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700