用户名: 密码: 验证码:
覆岩破坏充分采动程度定义及判别方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Definition and distinguishing method of critical mining degree of overburden failure
  • 作者:郭文兵 ; 娄高中
  • 英文作者:GUO Wenbing;LOU Gaozhong;School of Energy Science and Engineering,Henan Polytechnic University;Coal Production Safety Collaborative Innovation Center in Henan Province;School of Civil and Architectural Engineering,Anyang Institute of Technology;
  • 关键词:非充分采动 ; 导水裂缝带高度 ; 覆岩破坏充分采动 ; 工作面临界尺寸 ; 保水采煤
  • 英文关键词:subcritical mining;;height of water flowing fractured zone;;critical mining of overburden failure;;critical size of working face;;water-preserved coal mining
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:河南理工大学能源科学与工程学院;煤炭安全生产河南省协同创新中心;安阳工学院土木与建筑工程学院;
  • 出版日期:2019-03-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.294
  • 基金:国家自然科学基金资助项目(51774111);; 河南省科技创新杰出人才资助项目(184200510003)
  • 语种:中文;
  • 页:MTXB201903012
  • 页数:12
  • CN:03
  • ISSN:11-2190/TD
  • 分类号:95-106
摘要
随着煤层开采深度的逐年增加,非充分采动工作面越来越多。导水裂缝带高度是实现保水开采的关键参数,但非充分采动工作面开采条件下导水裂缝带高度小于充分采动工作面。为进一步研究其原因,采用理论分析、相似模拟、数值模拟等方法研究了导水裂缝带高度影响因素的敏感性及其与工作面尺寸的关系,提出了覆岩破坏充分采动程度的定义及判别方法。结果表明:工作面尺寸对导水裂缝带高度的影响仅次于开采厚度。当工作面尺寸较小时,覆岩破坏不发育;当工作面尺寸增加到一定值时,覆岩破坏仅形成垮落带;当工作面尺寸继续增加时,覆岩破坏形成裂缝带且导水裂缝带高度随着工作面尺寸的增加而增加;当导水裂缝带高度发育至最大值后,导水裂缝带高度不再随工作面尺寸的增加而增加。覆岩破坏过程中仅形成垮落带的阶段定义为覆岩破坏的极不充分采动(即覆岩极不充分破坏);覆岩破坏过程中形成裂缝带且导水裂缝带高度随工作面尺寸增加而增加的阶段定义为覆岩破坏的非充分采动(即覆岩非充分破坏);导水裂缝带高度达到最大值且不再随工作面尺寸增加而增加的阶段定义为覆岩破坏的充分采动(即覆岩充分破坏)。导水裂缝带高度刚达到最大值时的工作面尺寸为工作面临界尺寸。当工作面尺寸小于工作面临界尺寸时,覆岩破坏为非充分采动;当工作面尺寸大于工作面临界尺寸时,覆岩破坏为充分采动。覆岩破坏充分采动程度的主要影响因素有工作面尺寸、开采厚度、开采深度、覆岩力学性质、覆岩结构特征和覆岩破断角。
        With the increase of mining depth of coal seam year by year,more and more subcritical working faces are coming into being.The height of water flowing fractured zone is a key parameter to realize water-preserved mining,but the heights of water flowing fractured zone in subcritical working faces are lower than those in critical working faces.In order to further study its causes,the sensitivity of influencing factors of height of water flowing fractured zone and the relationship between the height of water flowing fractured zone and size of working face were studied by means of theoretical analysis,similar simulation and numerical simulation.The definition and distinguishing method of critical mining degree of overburden failure were proposed.The results show that the influence of size of working face on the height of water flowing fractured zone is next only to mining thickness.When the size of working face is small enough,the overburden failure does not develop.When the size of working face increases to a certain value,the overburden failure only forms caved zone.When the size of working face continues to increase,the overburden failure forms fractured zone and the height of water flowing fractured zone increases with the increase of size of working face.When the height of water flowing fractured zone develops to the maximum value,the height of water flowing fractured zone will not continue to increase with the increase of size of working face.The stage in which only caved zone formed in overburden failure process was defined as super-subcritical mining of overburden failure.The stage in which the fractured zone formed and the height of water flowing fractured zone increases with the increase of size of working face was defined as subcritical mining of overburden failure.The stage in which the height of water flowing fractured zone reaches the maximum value and no longer increases with the increase of size of working face was defined as critical mining of overburden failure.The size of working face was defined as the critical size of working face when the height of water flowing fractured zone reaches the maximum value for the first time.When the size of working face is smaller than the critical size of working face,the mining degree of overburden failure is subcritical.When the size of working face is larger than the critical size of working face,the mining degree of overburden failure is critical.The main influencing factors on the critical mining degree of overburden failure are the size of working face,mining thickness,mining depth,overburden mechanical properties,overburden structural characteristics and overburden breaking angle.
引文
[1]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1-7.QIAN Minggao,MIAO Xiexing,XU Jialin.Green mining of coal resources harmonizing with environment[J].Journal of China Coal Society,2007,32(1):1-7.
    [2]范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.FAN Limin,MA Xiongde,JI Ruijun.Progress in engineering practices of water-preserved coal mining in western eco-environment frangible area[J].Journal of China Coal Society,2015,40(8):1711-1717.
    [3]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.FAN Limin.Scientific connotation of water-preserved mining[J].Journal of China Coal Society,2017,42(1):27-35.
    [4]FAN Limin,MA Xiongde.A review on investigation of water-preserved coal mining in western China[J].International Journal of Coal Science&Technology,2018,5(4):411-416.
    [5]黄庆享.浅埋煤层保水开采岩层控制研究[J].煤炭学报,2017,42(1):50-55.HUANG Qingxiang.Research on roof control of water conservation mining in shallow seam[J].Journal of China Coal Society,2017,42(1):50-55.
    [6]张东升,李文平,来兴平,等.我国西北煤炭开采中的水资源保护基础理论研究进展[J].煤炭学报,2017,42(1):36-43.ZHANG Dongsheng,LI Wenping,LAI Xingping,et al.Development on basic theory of water protection during coal mining in northwest of China[J].Journal of China Coal Society,2017,42(1):36-43.
    [7]国家安全监管总局,国家煤矿安监局,国家能源局,国家铁路局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017:34-35.
    [8]许家林.岩层采动裂隙演化规律研究与应用[M].徐州:中国矿业大学出版社,2016:24-72.
    [9]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769.XU Jialin,ZHU Weibing,WANG Xiaozhen.New method to predict the height of fractured water-conducting zone by location of key strata[J].Journal of China Coal Society,2012,37(5):762-769.
    [10]孙亚军,徐智敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(2):238-245.SUN Yajun,XU Zhimin,DONG Qinghong.Monitoring and simulation research on development of water flowing fractures for coal mining under Xiaolangdi reservoir[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(2):238-245.
    [11]施龙青,辛恒奇,翟培合,等.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41.SHI Longqing,XIN Hengqi,ZHAI Peihe,et al.Calculating the height of water flowing fracture zone in deep mining[J].Journal of China University of Mining&Technology,2012,41(1):37-41.
    [12]许延春,李俊成,刘世奇,等.综放开采覆岩“两带”高度的计算公式及适用性分析[J].煤矿开采,2011,16(2):4-7,11.XU Yanchun,LI Juncheng,LIU Shiqi,et al.Calculation formula of“two-zone”height of overlying strata and its adaptability analysis[J].Coal Mining Technology,2011,16(2):4-7,11.
    [13]李振华,许延春,李龙飞,等.基于BP神经网络的导水裂隙带高度预测[J].采矿与安全工程学报,2015,32(6):905-910.LI Zhenhua,XU Yanchun,LI Longfei,et al.Forecast of the height of water flowing fractured zone based on BP neural networks[J].Journal of Mining&Safety Engineering,2015,32(6):905-910.
    [14]谭毅,郭文兵,杨达明,等.非充分采动下浅埋坚硬顶板“两带”高度分析[J].采矿与安全工程学报,2017,34(5):845-851.TAN Yi,GUO Wenbing,YANG Daming,et al.Analysis on height of“two zones”under subcritical mining in shallow coal seam with hard roof[J].Journal of Mining&Safety Engineering,2017,34(5):845-851.
    [15]刘贵,张华兴,刘治国,等.河下综放开采覆岩破坏发育特征实测及模拟研究[J].煤炭学报,2013,38(6):987-993.LIU Gui,ZHANG Huaxing,LIU Zhiguo,et al.Observation and simulation research on development features of overlying strata failure in conditions of fully-mechanized top-coal caving mining under river[J].Journal of China Coal Society,2013,38(6):987-993.
    [16]余学义,刘樟荣,赵兵朝,等.王家沟煤矿条带充填开采导水裂隙发育规律研究[J].煤炭工程,2015,47(5):83-86.YU Xueyi,LIU Zhangrong,ZHAO Bingchao,et al.Research on law of water flowing fractured development duo to strip-filling mining in wangjiagou coal mine[J].Coal Engineering,2015,47(5):83-86.
    [17]刘世奇.厚煤层开采覆岩破坏规律及粘土隔水层采动失稳机理研究[D].北京:中国矿业大学(北京),2016:14.LIU Shiqi.The law of the overburden failure in thick coal seam mining and instability criterion of the clay aquiclude under the influence of mining[D].Beijing:China University of Mining&Technology(Beijing),2016:14.
    [18]胡炳南,张华兴,申宝宏.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M].北京:煤炭工业出版社,2017:173-175.
    [19]尹尚先,徐斌,徐慧,等.综采条件下煤层顶板导水裂缝带高度计算研究[J].煤炭科学技术,2013,41(9):138-142.YIN Shangxian,XU Bin,XU Hui,et al.Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J].Coal Science and Technology,2013,41(9):138-142.
    [20]尹增德.采动覆岩破坏特征及其应用研究[D].青岛:山东科技大学,2007:104.YIN Zengde.The failure characteristics of overburden strata induced by mining and their applications[D].Qingdao:Shandong University of Science&Technology,2007:104.
    [21]樊振丽.纳林河复合水体下厚煤层安全可采性研究[D].北京:中国矿业大学(北京),2013:37-41.FAN Zhenli.Mining safety research of thick coal seam under aquifers and surface water in nalinhe mine area[D].Beijing:China U-niversity of Mining&Technology(Beijing),2013:37-41.
    [22]杨国勇,陈超,高树林,等.基于层次分析-模糊聚类分析法的导水裂隙带发育高度研究[J].采矿与安全工程学报,2015,32(2):206-212.YANG Guoyong,CHEN Chao,GAO Shulin,et al.Study on the height of water flowing fractured zone based on analytic hierarchy process and fuzzy clustering analysis method[J].Journal of Mining&Safety Engineering,2015,32(2):206-212.
    [23]张傲翔,曹代勇,魏迎春,等.煤层气井产出煤粉浓度与地质因素的灰色关联分析[J].煤田地质与勘探,2016,44(5):76-79.ZHANG Aoxiang,CAO Daiyong,WEI Yingchun,et al.Gray correlation analysis between pulverized coal concentration and geological factors of CBM wells[J].Coal Geology&Exploration,2016,44(5):76-79.
    [24]王正帅,邓喀中,谭志祥.导水裂缝带高度预测的模糊支持向量机模型[J].地下空间与工程学报,2011,7(4):723-727.WANG Zhengshuai,DENG Kazhong,TAN Zhixiang.Height prediction of water fractured zone based on fuzzy SVM[J].Chinese Journal of Underground Space and Engineering,2011,7(4):723-727.
    [25]孙才新,李俭,郑海平,等.基于灰色面积关联度分析的电力变压器绝缘故障诊断方法[J].电网技术,2002,26(7):24-29.SUN Caixin,LI Jian,ZHENG Haiping,et al.A new method of faulty insulation diagnosis in power transformer based on degree of area incidence analysis[J].Power System Technology,2002,26(7):24-29.
    [26]胡巍,徐智敏,王文学,等.海下采煤软弱覆岩导水断裂带发育高度研究[J].煤炭学报,2013,38(8):1338-1344.HU Wei,XU Zhimin,WANG Wenxue,et al.Research on development of water flowing fractures in soft overlying strata for coal mining under sea[J].Journal of China Coal Society,2013,38(8):1338-1344.
    [27]王连国,王占盛,黄继辉,等.薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J].采矿与安全工程学报,2012,29(5):607-612.WANG Lianguo,WANG Zhansheng,HUANG Jihui,et al.Prediction on the height of water-flowing fractured zone for shallow seam covered with thin bedrock and thick windblown sands[J].Journal of Mining&Safety Engineering,2012,29(5):607-612.
    [28]陈亮,吴兵,许小凯,等.泥、砂岩交互地层综放开采覆岩破坏高度的确定[J].采矿与安全工程学报,2017,34(3):431-436,443.CHEN Liang,WU Bing,XU Xiaokai,et al.Determination of overburden failure height in alternate strata of mudstone and sandstone with fully mechanized caving method[J].Journal of Mining&Safety Engineering,2017,34(3):431-436,443.
    [29]张宏伟,朱志洁,霍利杰,等.特厚煤层综放开采覆岩破坏高度[J].煤炭学报,2014,39(5):816-821.ZHANG Hongwei,ZHU Zhijie,HUO Lijie,et al.Overburden failure height of superhigh seam by fully mechanized caving method[J].Journal of China Coal Society,2014,39(5):816-821.
    [30]钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003:28-34.
    [31]马亚杰,冯玉,董桂玉,等.煤层开采顶板导水裂隙带高度预测理论与方法[M].北京:地质出版社,2014:24.
    [32]刘洋.工作面不同采宽与导水裂隙带高度关系研究[J].煤矿安全,2010,41(4):13-17.LIU Yang.Research on relationship between different width of working face and height of water-flowing fractured zone[J].Safety in Coal Mines,2010,41(4):13-17.
    [33]李忠建.半胶结低强度围岩浅埋煤层开采覆岩运动及水害评价研究[D].青岛:山东科技大学,2011:28-65.LI Zhongjian.Study on shallow coal seam mining overburden strata movement and water disaster evaluation in the condition of semi-cementation and low strength surrounding rocks[D].Qingdao:Shandong University of Science&Technology,2011:28-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700