用户名: 密码: 验证码:
Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy
  • 作者:Shuang ; Yu ; Rui-Ling ; Jia ; Tao ; Zhang ; Fu-Hui ; Wang ; Jian ; Hou ; Hui-Xia ; Zhang
  • 英文作者:Shuang Yu;Rui-Ling Jia;Tao Zhang;Fu-Hui Wang;Jian Hou;Hui-Xia Zhang;School of Materials Science and Engineering,Inner Mongolia University of Technology;State Key Laboratory for Marine Corrosion and Protection,Luoyang Ship Material Research Institute (LSMRI);School of Materials Science and Engineering,Northeast University;
  • 英文关键词:Magnesium alloy;;Aging precipitates;;Corrosion;;Potential difference;;Transmission electron microscopy(TEM)
  • 中文刊名:JSXY
  • 英文刊名:金属学报(英文版)
  • 机构:School of Materials Science and Engineering,Inner Mongolia University of Technology;State Key Laboratory for Marine Corrosion and Protection,Luoyang Ship Material Research Institute (LSMRI);School of Materials Science and Engineering,Northeast University;
  • 出版日期:2019-04-15
  • 出版单位:Acta Metallurgica Sinica(English Letters)
  • 年:2019
  • 期:v.32
  • 基金:supported financially by the National Natural Science Foundation of China (No. 51531007);; the Natural Science Foundation of Inner Mongolia (No. 2016MS0538);; the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (No. KF160408)
  • 语种:英文;
  • 页:JSXY201904003
  • 页数:10
  • CN:04
  • ISSN:21-1361/TG
  • 分类号:23-32
摘要
A large amount of directional and willow-like β' phase was precipitated in Mg-10 Gd-3 Y-0.4 Zr(GW103 K) alloy after solution treatment and subsequently aged treatment(T6). In order to explore the effect of the precipitates on the corrosion behavior of the GW103 K alloy, the alloy was subjected to solution treatment(T4) at 773 K for 4 h at first, subsequently aged at 498 K for 193 h(T6). The microstructure evolution of the GW103 K alloy after this treatment was investigated by scanning electron microscopy and transmission electron microscopy. The high-angle annular detector dark-field scanning transmission electron microscopy was used to observe the typical corrosion morphologies of the nanoscale precipitation phases(β') in the T6-treated alloy. The corrosion rate was measured by potentiodynamic polarization test. Combining with the potential measurement results by scanning Kelvin probe force microscopy, the effects of the skeleton-like Mg_(24)(Gd,Y)_5 andf precipitates on the corrosion behavior of GW103 K alloy were explored. The results showed that the corrosion rate of the GW103 K alloy in different conditions was ranked as: as-cast alloy> T4-treated alloy> T6-treated alloy,attributing to the fact that the relative potential differences of skeleton-like Mg_(24)(Gd,Y)_5 were lower than those of the matrix, therefore Mg24(Gd, Y)5 phase formed micro-galvanic coupling with the matrix and corrosion dissolution occurred.The nanoscale β' precipitates in T6-treated alloy can retard the cathodic process.
        A large amount of directional and willow-like β' phase was precipitated in Mg-10 Gd-3 Y-0.4 Zr(GW103 K) alloy after solution treatment and subsequently aged treatment(T6). In order to explore the effect of the precipitates on the corrosion behavior of the GW103 K alloy, the alloy was subjected to solution treatment(T4) at 773 K for 4 h at first, subsequently aged at 498 K for 193 h(T6). The microstructure evolution of the GW103 K alloy after this treatment was investigated by scanning electron microscopy and transmission electron microscopy. The high-angle annular detector dark-field scanning transmission electron microscopy was used to observe the typical corrosion morphologies of the nanoscale precipitation phases(β') in the T6-treated alloy. The corrosion rate was measured by potentiodynamic polarization test. Combining with the potential measurement results by scanning Kelvin probe force microscopy, the effects of the skeleton-like Mg_(24)(Gd,Y)_5 andf precipitates on the corrosion behavior of GW103 K alloy were explored. The results showed that the corrosion rate of the GW103 K alloy in different conditions was ranked as: as-cast alloy> T4-treated alloy> T6-treated alloy,attributing to the fact that the relative potential differences of skeleton-like Mg_(24)(Gd,Y)_5 were lower than those of the matrix, therefore Mg24(Gd, Y)5 phase formed micro-galvanic coupling with the matrix and corrosion dissolution occurred.The nanoscale β' precipitates in T6-treated alloy can retard the cathodic process.
引文
[1]M.K.Kulekci,Int.J.Adv.Manuf.Technol.39,851(2008)
    [2]S.B.Shen,S.Cai,X.G.Bao,P.Xu,Y.Li,S.Jiang,G.H.Xu,Chem.Eng.J.339,7(2018)
    [3]X.R.Chen,F.K.Ning,J.Hou,Q.C.Le,Y.Tang,Ultrason.Sonochem.40,433(2018)
    [4]X.W.Liu,Y.Liu,B.Jin,Y.Lu,J.Lu,J.Mater.Sci.Technol.33,224(2017)
    [5]L.P.Zhong,Y.J.Wang,M.Gong,X.W.Zheng,J.Peng,Mater.Charact.138,284(2018)
    [6]D.F.Zhang,X.Chen,F.S.Pan,L.Y.Jiang,G.S.Hu,D.L.Yu,Funct.Mater.45,05001(2014)
    [7]R.L.Satet,M.J.Hoffmann,J.Am.Ceram.Soc.88,2485(2005)
    [8]Y.R.Wu,W.Y.Hu,L.X.Sun,J.Phys.D:Appl.Phys.40,7584(2007)
    [9]L.L.Tang,Y.H.Zhao,R.K.Islamgaliev,R.Z.Valiev,Y.T.Zhu,J.Alloys Compd.721,577(2017)
    [10]Y.Gao,Q.D.Wang,J.H.Gu,Y.Zhao,Y.Tong,J.Y.Kaneda,J.Rare Earths 26,298(2008)
    [11]X.B.Liu,R.S.Chen,E.H.Han,J.Alloys Compd.465,232(2008)
    [12]S.Q.Liang,D.K.Guan,X.P.Tan,L.Chen,Y.Tang,Mater.Sci.Eng.,A 528,1589(2011)
    [13]Q.Wang,L.Xiao,W.C.Liu,H.H.Zhang,W.D.Cui,Z.Q.Li,G.H.Wu,Mater.Sci.Eng.,A 705,402(2017)
    [14]S.Q.Liang,D.K.Guan,L.Chen,Z.H.Gao,H.X.Tang,X.T.Tong,R.Xiao,Mater.Des.32,361(2011)
    [15]H.Liu,Y.Gao,J.Z.Liu,Y.M.Zhu,Y.Wang,J.F.Nie,Acta Mater.61,453(2013)
    [16]D.K.Xu,E.H.Han,Y.B.Xu,Prog.Nat.Sci.-Mater.26,117(2016)
    [17]Y.X.Li,D.Qiu,Y.H.Rong,M.X.Zhang,Intermetallics 40,45(2013)
    [18]J.X.Zheng,Z.Li,L.D.Tan,X.S.Xu,R.C.Luo,B.Chen,Mater.Charact.117,76(2016)
    [19]Y.C.Wan,H.C.Xiao,S.N.Jiang,B.Tang,C.M.Liu,Z.Y.Chen,L.W.Lu,Mater.Sci.Eng.,A 617,243(2014)
    [20]Y.W.Song,D.Y.Shan,E.H.Han,J.Mater.Sci.Technol.33,945(2017)
    [21]J.H.Liu,Y.W.Song,J.C.Chen,P.Chen,D.Y.Shan,E.H.Han,Electrochim.Acta 189,190(2016)
    [22]L.M.Peng,J.W.Chang,X.W.Guo,A.Atrens,W.J.Ding,Y.H.Peng,J.Appl.Electrochem.39,913(2009)
    [23]S.Q.Liang,D.K.Guan,X.P.Tan,Mater.Des.32,1194(2011)
    [24]J.Z.Zhang,Z.X.Ma,D.F.Li,Mater.Heat Treat.38,73(2007)
    [25]K.Zhang,X.G.Li,Y.J.Li,M.L.Ma,Trans.Nonferrous.Met.Soc.China 18,12(2008)
    [26]X.M.Zhang,Z.Y.Mu,Y.L.Deng,C.P.Tang,L.Q.Guan,J.Sci.Technol.44,2223(2013)
    [27]J.Zhao,J.P.Li,Y.C.Guo,Z.Yang,Y.M.Yang,M.X.Liang,Rare Met.Mater.Eng.37,281(2008)
    [28]L.Y.Wang,J.Huang,J.Dong,K.Feng,Y.X.Wu,P.K.Chu,Mater.Charact.118,486(2016)
    [29]T.Honma,T.Ohkubo,K.Hono,S.Kamado,Mater.Sci.Eng.,A395,301(2005)
    [30]C.Antion,P.Donnadieu,F.Perrard,A.Deschamps,C.Tassin,A.Pisch,Acta Mater.51,5335(2003)
    [31]J.X.Zheng,X.S.Xu,K.Y.Zhang,B.Chen,Mater.Lett.152,287(2015)
    [32]S.M.He,X.Q.Zeng,L.M.Peng,X.Gao,J.F.Nie,W.J.Ding,J.Alloys Compd.421,309(2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700