用户名: 密码: 验证码:
制备过程中淀粉浓度对莲子回生淀粉理化特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Preparation Concentration on the Physicochemical Properties of Retrograded Starch from Lotus Seed
  • 作者:陈钏杰 ; 李欣 ; 黄莹 ; 常青 ; 郑宝东 ; 张怡 ; 曾红亮
  • 英文作者:CHEN Chuan-jie;LI Xin;HUANG Ying;CHANG Qing;ZHENG Bao-dong;ZHANG Yi;ZENG Hong-liang;College of Food Science,Fujian Agriculture and Forestry University;Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch,Fujian Agriculture and Forestry University;China-Ireland International Cooperation Centre for Food Material Science and Structure Design,Fujian Agriculture and Forestry University;
  • 关键词:莲子 ; 回生淀粉 ; 淀粉浓度 ; 理化特性
  • 英文关键词:lotus seed;;retrograded starch;;starch content;;physicochemical properties
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:福建农林大学食品科学学院;福建省特种淀粉品质科学与加工技术重点实验室福建农林大学;中爱国际合作食品物质学与结构设计研究中心福建农林大学;
  • 出版日期:2018-12-05 17:02
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.424
  • 基金:福建农林大学国际科技合作与交流资助项目(KXGH17001);福建农林大学杰出青年科研人才计划资助项目(xjq201714);福建农林大学科技创新专项基金项目(CXZX2017018);; 国家自然科学基金青年科学基金项目(31701552)
  • 语种:中文;
  • 页:SPKJ201908013
  • 页数:7
  • CN:08
  • ISSN:11-1759/TS
  • 分类号:79-84+102
摘要
本文从热稳定性、膨胀度及溶解度、黏度、流变特性等方面研究制备过程中淀粉浓度对莲子回生淀粉(Retrograded starch,RS)理化特性的影响。热重分析(Thermogravimetric analysis,TGA)结果表明,5%及40%淀粉浓度下的回生淀粉含有较多易挥发物质,20%淀粉浓度下的回生淀粉含有较多相对热稳定组分。随着淀粉浓度增加,莲子回生淀粉膨胀度减小,溶解度增大,黏度递减,且样品膨胀度及溶解度随温度升高而增加。由静态流变结果可知,所有样品均表现出剪切稀化特性,且5%、10%及20%淀粉浓度下的回生淀粉的黏度高于30%、40%及50%淀粉浓度下的回生淀粉的黏度;由动态流变结果可知,当角频率小于10 rad·s~(-1)时,所有样品的储存模量均不受角频率影响;当角频率大于10 rad·s~(-1)时,5%、10%及20%淀粉浓度下的回生淀粉的储存模量随角频率增加而减小,而30%、40%及50%淀粉浓度下的回生淀粉的储存模量随角频率增加而增大;所有样品的损失模量均随角频率升高呈上升趋势。综上,莲子淀粉回生行为受到回生过程中淀粉浓度的影响,并在理化性质上呈现差异。
        The effect of preparation concentration on the physicochemical properties of retrograded starch(RS)from lotus seed was investigated. The thermal stability,swelling power and solubility,viscosity,rheological properties of samples were determined,respectively. Thermogravimetric analysis(TGA)showed that RS5% and RS40% of contained more volatile substances,while RS20% contained more relatively stable heat-stable components among samples. As the starch concentration increases,the swelling powers of all samples reduced,and the solubility increased,as well as the viscosity decreased. Moreover,the swelling power and solubility increased with the increasing temperature. It could be seen from the static rheological results that all samples exhibited shear thinning characteristics,and the viscosities of RS5%,RS10%,and RS20% were higher than those of RS30%,RS40%,and RS50%. Furthermore,from the results of dynamic rheology,when the angular frequency was less than 10 rad·s~(-1),the storage modulus of all samples was not affected by the angular frequency. when the angular frequency was greater than 10 rad·s~(-1),the storage modulus of RS5%,RS10%,and RS20% decreased with the increasing angular frequency,whereas the storage modulus of RS30%,RS40%,and RS50% increased with the increasing angular frequency. The loss modulus of all samples increased with the increasing angular frequency. All in all,the preparation concentration of starch displayed a significant effect on the physicochemical properties of retrograded starch from lotus seed. The physicochemical properties of retrograded starch with low concentrations of starch(5%,10%,20%)had a significantly different compared to retrograded starch with high concentrations(30%,40%,50%).
引文
[1]Zheng B,Zhang Y,Zeng H. Chapter 13:Structural characteristics and prebiotic effects of lotus seed resistant starch[J]. Probiotics Prebiotics & Synbiotics,2016:195-211.
    [2]曾绍校. 莲子淀粉品质特性的研究与应用[D].福州:福建农林大学,2007.
    [3]Zhang Y,Zeng H,Wang Y,et al. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects[J]. Food Chemistry,2014,155(15):311-318.
    [4]Zeng H,Huang C,Lin S,et al. Lotus seed resistant starch regulates gut microbiota and increases SCFAs production and mineral absorption in mice[J]. Journal of Agricultural & Food Chemistry,2017,65(42):9217-9225.
    [5]Zeng H,Chen P,Chen C,et al. Structural properties and prebiotic activities of fractionated lotus seed resistant starches[J].Food Chemistry,2018,251(15):33-40.
    [6]Zeng H,Zheng Y,Lin Y,et al. Effect of fractionated lotus seed resistant starch on proliferation of Bifidobacterium longum and Lactobacillus delbrueckii subsp. bulgaricus and its structural changes following fermentation[J]. Food Chemistry,2018,268(1):134-142.
    [7]Bogracheva T Y,Wang Y L,Hedley C L. The effect of water content on the ordered/disordered structures in starches[J]. Biopolymers,2001,58(3):247-259.
    [8]Hulleman S H D,Janessen F H P,Feil H. The role of water during plasticization of native starches[J]. Polymer,1998,39(10):2043-2048.
    [9]Li Z F,Liu W J,Gu Z B,et al. The effect of starch concentration on the gelatinization and liquefaction of corn starch[J]. Food Hydrocolloids,2015,48:189-196.
    [10]Gudmundsson M. Retrogradation of starch and the role of its components[J]. Thermochimica Acta,1994,246(2):329-341.
    [11]S Lewen K,Paeschke T,Reid J,et al. Analysis of the retrogradation of low starch concentration gels using differential scanning clorimetry,rheology and nuclear magnetic resonance spectroscopy[J]. Journal of Agricultural & Food Chemistry,2003,51(8):2348-2358.
    [12]Guo Z,Zeng S,Lu X,et al. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure[J].Food Chemistry,2015,186(1):223-230.
    [13]Chen B,Guo Z,Zeng S,et al. Paste structure and rheological properties of lotus seed starch-glycerin monostearate complexes formed by high-pressure homogenization[J]. Food Research International,2018,103:380-389.
    [14]Zaidul I S M,YamauchiI H,Kim S J,et al. RVA study of mixtures of wheat flour and potato starches with different phosphorus contents[J]. Food Chemistry,2007,102(4):1105-1111.
    [15]郭泽镔. 超高压处理对莲子淀粉结构及理化特性影响的研究[D].福州:福建农林大学,2014.
    [16]陈秉彦. 莲子淀粉微波效应的研究[D].福州:福建农林大学,2015.
    [17]展海军,崔丽伟,李婕,等. 用差热分析法测定玉米中淀粉含量[J]. 河南工业大学学报(自然科学版),2012,33(6):31-36.
    [18]Wang S J,Li C L,Copeland L,et al. Starch retrogradation:A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(5):568-585.
    [19]崔丽伟. 热分析法测定玉米和大米淀粉含量的研究[D].郑州:河南工业大学,2013.
    [20]Liu X,Yu L,Xie F,et al. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios[J]. Starch-St?rke,2010,62(3-4):139-146.
    [21]Tester R F,Morrison W R. Properties of damaged starch granules. V:Composition and swelling of fractions of wheat starch in water at various temperatures[J]. Journal of Cereal Science,1994,20(2):175-181.
    [22]Biliaderis C G. The structure and interactions of starch with food constituents[J]. Canadian Journal of Physiology and Pharmacology,1991,69(1):60-78.
    [23]刘兴训. 淀粉淀粉基材料的热降解性能研究[D].广州:华南理工大学,2011.
    [24]李雨露,刘小如,李红艳,等. 水分含量对莲子淀粉回生影响及分子动力学模拟分析[J]. 食品科学,2015,36(17):83-87.
    [25]Ai Y,Jane J L. Gelatinization and rheological properties of starch[J]. Starch-St?rke,2015,67(3-4):213-324.
    [26]Nara S,Komiya T. Studies on the relationship between wate-satured state and crystallinity by the diffraction method for moistened potato starch[J]. Starch-St?rke,2006,35(12):407-410.
    [27]刘洁,刘亚伟. 直链淀粉与支链淀粉的分离方法[J]. 粮食与饲料工业,2005(2):15-17.
    [28]Kalichevsky M T,Ring S G. Incompatibility of amylose and amylopectin in aqueous solution[J]. Carbohydrate Research,1987,162(2):323-328.
    [29]Tako M,Tamaki Y,Teruya T,et al. The principles of starch gelatinization and retrogradation[J]. Food & Nutrition Sciences,2014,5(3):280-291.
    [30]谭洪卓,谭斌,高虹,等. 甘薯淀粉动力学特性及其回生机理探讨[J]. 食品与生物技术学报,2008,27(6):21-27.
    [31]张莉,李志西,毛加银. 板栗淀粉糊流变性研究[J]. 西北农业学报,2001,10(3):90-92.
    [32]Putaux J L,Bulé A,Chanzy H. Network formation in dilute amylose and amylopectin studied by TEM[J]. Macromolecules,2008,33(17):6416-6422.
    [33]Zhou X,Wang R,Yoo S H,et al. Water effect on the interaction between amylose and amylopectin during retrogradation[J]. Carbohydrate Polymers,2011,86(4):1671-1674.
    [34]谭洪卓,Bi T,刘明,等. 淀粉流变学特性的研究进展[J]. 中国粮油学报,2008,23(4):215-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700