用户名: 密码: 验证码:
预测树脂基体材料性能与固化度关系的GIM模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:GIM method for predicting the relation between material properties and conversion of epoxy resin
  • 作者:王春 ; 梁腾飞 ; 校金友 ; 文立华
  • 英文作者:WANG Chun;LIANG Tengfei;XIAO Jinyou;WEN Lihua;School of Astronautics,Northwestern Polytechnical University;
  • 关键词:GIM方法 ; 环氧树脂 ; 材料性能 ; 固化度 ; 预测
  • 英文关键词:group interaction modelling;;epoxy resin;;thermo-mechanical properties;;crosslinking density;;prediction
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:西北工业大学航天学院;
  • 出版日期:2018-06-06 14:29
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国防基础预研项目(XXPT-125-XXXX-31-2)
  • 语种:中文;
  • 页:FUHE201904010
  • 页数:10
  • CN:04
  • ISSN:11-1801/TB
  • 分类号:107-116
摘要
通过分析固化度对环氧树脂体系的自由度和结合能的影响,对GIM(Group interaction modelling)方法进行了拓展,研究了树脂材料性能随固化度的变化规律。以EPON862/DETDA体系为例,对拓展GIM方法进行了验证。研究结果表明,拓展GIM方法不仅可以准确预测完全交联EPON862/DETDA的材料性能,而且能预测非完全固化体系的玻璃化转变温度、体积收缩率、热膨胀系数及弹性模量随固化度的变化规律,以上结果均与实验和分子动力学模拟结果吻合较好。此拓展GIM方法可与固化反应动力学联合,为模拟环氧树脂在固化反应过程中产生的残余应力和变形提供准确的材料性能输入参数。
        An extended GIM(group interaction modelling)method was developed by considering the influence of conversion on the cohesive energy and the degrees of freedom of epoxy resin system,which can predict the relation between conversion and material properties of epoxy resin.The epoxy resin composed of epoxy EPON862 and curing agent DETDA was used as an example for validation of the extended GIM method.It is found that the extended GIM method not only accurately predicts the material properties of fully cured EPON862/DETDA system,including glass transition temperature,volume shrinkage,coefficient of thermal expansion and elastic modulus,but also well captures the trend of these material properties changing with the conversion throughout curing process.And good agreement is found by comparing predicted results with that obtained from the molecular dynamics(MD)simulation and experiments.As combined with curing kinetics,this extended GIM method is capable of providing accurate material properties as the input parameters for modelling the shrinkage strain and residual stress throughout the curing process of epoxy resin.
引文
[1]王慧杰.航空复合材料树脂基体的现状及发展[J].复合材料学报,1995,12(4):35-38.WANG H J.Status and developments of resin matrix of aeronautical composite materials[J].Acta Materiae Compositae Sinica,1995,12(4):35-38(in Chinese).
    [2]邢丽英,蒋诗才,周正刚.先进树脂基复合材料制造技术进展[J].复合材料学报,2013,30(2):1-9.XING L Y,JIANG S C,ZHOU Z G.Progress of manufacturing technology development of advanced polymer matrix composites[J].Acta Materiae Compositae Sinica,2013,30(2):1-9(in Chinese).
    [3]陈伟明,王成忠,周同悦,等.高性能T800碳纤维复合材料树脂基体[J].复合材料学报,2006,23(4):29-35.CHEN W M,WANG C Z,ZHOU T Y,et al.High performance resin matrix for T-800carbon fiber composites[J].Acta Materiae Compositae Sinica,2006,23(4):29-35(in Chinese).
    [4]邢丽英,包建文,礼嵩明,等.先进树脂基复合材料发展现状和面临的挑战[J].复合材料学报,2016,33(7):1327-1338.XING L Y,BAO J W,LI S G,et al.Developments status and facing challenge of advanced polymer matrix composites[J].Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [5]闵荣,元振毅,王永军,等.基于黏弹性本构模型的热固性树脂基复合材料固化变形数值仿真模型[J].复合材料学报,2017,34(10):2254-2262.MIN,R,YUAN Z Y,WANG Y J,et al.Numerical simulation for curing deformation of resin matrix thermosetting composite using viscoelastic constitutive model[J].Acta Materiae Compositae Sinica,2017,34(10):2254-2262(in Chinese).
    [6]NURI E,TOMASZ G.Development of the properties of a carbon fibre reinforced thermosetting composite through cure[J].Composite:Part A,2010,41:401-409.
    [7]FOX T G,LOSHAEK S.Isothermal viscosity-molecular weight dependence for long polymer chain[J].Journal of Applied Physics,1955,26:1080-1082.
    [8]DRUM M F,DODGE C W H,NIELSEN L E.Crosslinking of a phenol-formaldehyde novolac determination by dynamicmechanical measurements[J].Ind.Eng.Chem,1956,48(1):76-81.
    [9]MASON P.Thermal expansion and viscoelasticity of rubber in relation to crosslinking and molecular weight[J].Polymer,1964,5:625-635.
    [10]SHIBAYAMA K,SUZUKI Y.Effect of crosslinking density on the viscoelastic properties of unsaturated polyesters[J].Journal of Polymer Science,1965,3:2637-2651.
    [11]LAU C H,HODD K A,WRIGHT W W.Structure and properties relationships of epoxy resins part 1:Crosslink density of cured resin II—Model networks properties[J].Polymer International,2010,18(5):316-322.
    [12]CHANG T D,CARR S H,BRITTAIN J O.Studies of epoxy resin systems:Part B—Effect of crosslinking on the physical properties of an epoxy resin[J].Polymer Engineering &Science,1982,22(18):1213-1220.
    [13]CHEN Y,CHIA J Y H,SU Z C,et al.Molecular modeling of epoxide-amine systems:Topological cure conversion limit and its influence on material properties[J].Polymer,2014,55(23):6124-6131.
    [14]LI C Y,ALEJANDRO S.Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA[J].Polymer,2011,52:2920-2928.
    [15]DAVID P.Group interaction modelling of polymer properties[M].New York:Elsevier,1995.
    [16]JOEL P F,DAVID P.Thermodynamic and mechanical properties of amine-cured epoxy resins using group interaction modelling[J].J Mater Sci,2006,41:6631-6638.
    [17]JOEL P F,DAVID P.A model for the prediction of structure-property relations in cross-linked polymers[J].Polymer,2008,49:5588-5595.
    [18]GUMEN V R,JONES F R,ATTWOOD D.Prediction of the glass transition temperatures for epoxy resins and blends using group interaction modelling[J].Polymer,2001,42(13):5717-5725.
    [19]GUEST N T,TILBROOK D,OGIN S L,et al.Characterization and modeling of diglycidyl ether of bisphenol an epoxy cured with aliphatic liquid amines[J].Journal of Applied Polymer Science,2014,130(5):3130-3141.
    [20]JONES F R,FOREMAN J P.The response of aerospace composites to temperature andhumidity[J].Polymer Composites in the Aerospace Industry,2015,50:335-369.
    [21]GOULD P J,CORNISH R,Frank P,et al.Predictive model for segmented poly(urea)[J].2012,26:04007.
    [22]HUTNIK M,ARGON A S,SUTER U W.Simulation of elastic and plastic response in the glassy polycarbonate of 4,4’-isopropylidenediphenol[J].Macromolecules,1993,26(5):1097-1108.
    [23]BICERANO J.Computational modeling of polymers[M].Boca Raton:Crc Press,1992.
    [24]FLORY P J,VOLKENSTEIN M.Statistical mechanics of chain molecules[J].Physics Today,1970,23(5):71-71.
    [25]VAN K.Properties of polymers[M].Amsterdam:Elsevier,1993.
    [26]BICERANO J.Prediction of polymer properties[M].New York:Dekker,1993.
    [27]Material Studio[M].San Diego,CA:Accelrys Inc.
    [28]FINEGOLD L,MOODY S E.Debye and tarasov specific heat models:Solution of integral equation[J].American Journal of Physics,1972,40(6):915-916.
    [29]SEITZ J T.The estimation of mechanical properties of polymers from molecular structure[J].J Appl Polym Sci,1993,49:1331-1351.
    [30]SUN L,WARREN G L.Mechanical properties of surfacefunctionalized SWCNT/epoxy composite[J].Carbon,2008,46:320-328.
    [31]TAO K,YANG S Y.Effects of carbon nanotube fillers on the curing processes of epoxy resin based composites[J].J Appl Polym Sci,2006,102:5248-5254.
    [32]YANG S R,QU J M.Computing thermo-mechanical properties of cross-linked epoxy by molecular dynamic simulations[J].Polymer,2012,53:4806-4817.
    [33]WANG S,LIANG Z,GONNET P,et al.Effect of Nanotube Functionalization on the Coefficient of Thermal Expansion of Nanocomposites[J].Advanced Functional Materials,2010,17(1):87-92.
    [34]ZHOU Y X,PERVIN F,LEWIS L,et al.Experiment study on the thermal and mechanical properties of multi-walled carbon nanotube reinforced epoxy[J].Mater Sci Eng A,2007:657-664.
    [35]OPHIR Z H,EMERSON J A,WILKES G L.Sub-Tg annealing studies of rubber-modified and unmodified epoxy systems[J].Journal of Applied Physics,1978,49(10):5032-5038.
    [36]LIN Y G,SAUTEREAU H,PASCAULT J P.BDMA-catalyzed DDA-epoxy resin system:Temperature and composition effects on curing mechanism[J].Journal of Polymer Science Part A:Polymer Chemistry,1986,24(9):2171-2184.
    [37]BAIR H E.Exudation of an antioxidant additive from thin polyethylene films[J].Polymer Engineering &Science,1973,13(6):435-439.
    [38]VERCHERE D,SAUTEREAU H,PASCAULT J P,et al.Buildup of epoxycycloaliphatic amine networks.Kinetics,vitrification,and gelation[J].Macromolecules,1990,23(3):725-731.
    [39]MONTARNAL S,VERCHIRE D,SAUTEREAU H,et al.2nd international conference on cross-linked polymers[C].Lucerne,Switzerland 1998.
    [40]VERCHERE D,SAUTEREAU H,PASCAULT J P,et al.Buildup of epoxy cycloaliphatic amine networks.Kinetics,verification,and gelation[J].Macromolecules,1990,23(3):725-731.
    [41]Literature from resolution performance products,http://www.resins.com/resins/am/pdf/SC1183.pdf.
    [42]YAROVSKY I,EVANS E.Computer simulation of structure and properties of cross-linked polymers:application to epoxy resins[J].Polymer,2002,43(3):963-969.
    [43]VARSHNEY V,PATNAIK S S,ROY A K,et al.A molecular dynamics study of epoxy-based networks:cross-linking procedure and prediction of molecular and material properties[J].Macromolecules,2008,41(18):6837-6842.
    [44]丁安心,李书欣,倪爱清,等.热固性树脂基复合材料固化变形和残余应力树脂模拟研究综述[J].复合材料学报,2017,34(3):471-485.DING A X,LI S X,NI A Q,et al.A review of numerical simulation of cure-induced distortions and residual stresses in thermoset composites[J].Acta Materiae Compositae Sinica,2017,34(3):471-485(in Chinese).
    [45]YANG S,QU J.Computing thermomechanical properties of cross-linked epoxy by molecular dynamic simulations[J].Polymer,2012,53(21):4806-4817.
    [46]BOGETTI T A,GILLESPIE J W.Process-induced stress and deformation in thick-section thermoset composite laminates[J].Journal of Composite Materials,1992,26(5):626-660.
    [47]MAGNUS SVANBERG J,ANDERS HOLMBERG J.Prediction of shape distortion Part 1.FE-implementation of a path dependent constitutive model[J].Composites Part A:Applied Science and Manufacturing,2004,35(6):711-721.
    [48]TACK,J.L.,Thermodynamic and mechanical properties of EPON 862with curing agent DETDA by molecular simulation[D].US:Texas A&M University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700