用户名: 密码: 验证码:
金属拉扭强度关于材料声速及加载速率最小二乘法的回归模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Least squares regression model of tensile-torsional strength with respect to sound velocity value and loading rate of metal material
  • 作者:喻秋 ; 李顺才 ; 张凌雪
  • 英文作者:Yu Qiu;Li Shuncai;Zhang Lingxue;School of Mechanical and Electrical Engineering, Jiangsu Normal University;JSNU-SPBPU Institute of Engineering, Jiangsu Normal University;
  • 关键词:金属材料 ; 拉扭组合变形 ; 加载速率 ; 加载路径 ; 声速值 ; 最小二乘法回归模型
  • 英文关键词:metal material;;tension and torsion combination deformation;;loading rate;;loading path;;the sound velocity;;least squares regression model
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:江苏师范大学机电工程学院;江苏师范大学江苏圣理工学院;
  • 出版日期:2019-02-01 16:56
  • 出版单位:应用力学学报
  • 年:2019
  • 期:v.36;No.157
  • 基金:国家自然基金(51574228);; 江苏省大学生实践创新训练计划项目(201710320007);; 江苏省研究生科研创新计划项目(KYCX18_2150);; 徐州市科技计划项目(KH17002)
  • 语种:中文;
  • 页:YYLX201903015
  • 页数:9
  • CN:03
  • ISSN:61-1112/O3
  • 分类号:101-108+265
摘要
为了研究不同加载速率下金属的拉扭强度及其预测方法,利用声发射检测仪及电子拉扭试验机分别对铸铁和中碳钢标准试件进行了声速测定及不同加载速率、加载路径下的拉伸-扭转组合变形试验,得到了各试件材料的声速值及相应加载方案下的载荷-变形曲线;根据平面应力状态及强度理论,推导出了材料拉扭破坏的最大正应力、最大剪应力;利用试验中采集的最大轴力、最大扭矩计算得到了材料的拉扭破坏应力、破坏面方向;基于最小二乘法拟合得到了材料拉扭强度关于材料声速值、拉伸与扭转加载速率的多元回归模型。研究表明:随着拉伸与扭转加载速率的增加,铸铁、碳钢的破坏应力分别呈现总体上升、总体下降的趋势;相同加载速率、不同加载路径下材料的破坏强度各不相同;建立的回归模型能较好地预测给定材料在不同加载速率下的破坏应力,并以此建立塑性及脆性材料的拉扭强度条件。
        In order to study the tension-torsion strength of metal under different load rates and the strength predict method, the acoustic emission detector and electronic tension-torsion testing machine are used to measure the sound velocity value and perform tension and torsion combination experiments on the cast iron and medium carbon steel under different loading rates. The sound velocity and the axial force-axial displacement curves, torque-torsion angle curve of the specimen under the corresponding loading rate are obtained. Based on the theory of plane stress state and by the maximum axial force and the maximum torque collected by the test, the failure stress and failure direction of the material under various loading rates are calculated. Based on the least squares method, the multivariate regression model of material failure stress on the sound velocity, tensile and torsional loading rate was obtained. The experimental results show that with the increase of tensile and torsional loading rates, the failure stresses of cast iron and medium carbon steel show an overall upward trend and an overall downward trend respectively. Material failure stress varies under different loading paths. The established regression model for the same kind of metal material can well predict the failure stress at a given loading rate, and tensile and torsional strength conditions for plastic materials and brittle materials are given.
引文
[1]张学义,邹广平,夏兴有,等.低碳钢扭转预变形冲击性能与微观机理[J].哈尔滨工业大学学报,2011,43(增刊1):286-290.(ZHANGXueyi,ZOU Guangping,XIA Xingyou,et al.The impact properties and microcosmic mechanism of mild steel at the reverse pre-distortion[J].Journal of Harbin institute of technology,2011,43(S1):286-290(in Chinese)).
    [2]汤安民,刘泽明.灰铸铁拉伸与扭转破坏实验的强度条件分析[J].西安理工大学学报,2000,16(3):288-291.(TANG Anmin,LIUZeming.Strength conditional analysis for cast iron failure experiment in tension and torsion[J].Journal of Xi'an university of technology,2000,16(3):288-291(in Chinese)).
    [3]陈俊甫,管志平,牛晓玲,等.金属棒试样拉伸和扭转试验应变范围和力学特性对比[J].吉林大学学报(工学版),2017,47(6):1-8.(CHEN Junfu,GUAN Zhiping,NIU Xiaoling,et al.Comparisons of strain ranges and mechanical properties of metal rods under tension and torsion test[J].Journal of Jilin university(engineering and technology),2017,47(6):1-8(in Chinese)).
    [4]安奎星,王志勇,李林安,等.扭转塑性变形对6063铝合金拉伸力学性能的影响机理研究[J].实验力学,2016,31(2):157-164.(ANKuixing,WANG Zhiyong,LI Lin’an,et al.On the mechanism of effect of torsional plastic deformation on 6063 aluminum alloy tensile mechanical properties[J].Journal of experimental mechanics,2016,31(2):157-164(in Chinese)).
    [5]黄朝文,赵永庆,辛社伟,等.片层Ti-55531合金的拉伸和扭转断裂失效行为[J].稀有金属材料与工程,2016,45(8):2123-2127.(HUANG Chaowen,ZHAO Yongqing,XIN Shewei,et al.Tensile and torsion fracture failure behaviors of lamellar structure Ti-55531alloy[J].Rare metal materials and engineering,2016,45(8):2123-2127(in Chinese)).
    [6]吴晓,杨立军,孙晋.用双模量理论分析灰铸铁拉伸与扭转的破坏实验[J].湖南科技大学学报(自然科学版),2011,26(3):51-54.(WU Xiao,YANG Lijun,SUN Jin.Bimodulous theory analysis for gray cast iron failure experiment in tension and torsion[J].Journal of Hunan university of science&technology,2011,26(3):51-54(in Chinese)).
    [7]徐修权.高温预扭转条件下金属材料拉伸力学性能试验研究[D].长春:吉林大学,2016.(XU Xiuquan.Experimental research on tensional mechanical properties of metal materials under high temperature and pre-torsion[D].Changchun:Jilin University,2016(in Chinese)).
    [8]王国珍,王玉良,轩福贞,等.加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响[J].金属学报,2009,45(7):866-872.(WANG Guozhen,WANG Yuliang,XUAN Fuzhen,et al.Effects of loading rate,notch geometry and loading mode on the cle ava ge fracture behavior of 16MnR steel[J].Acta metallurgica sinica,2009,45(7):866-872(in Chinese)).
    [9]郭建英,马腾飞,刘生宝,等.双金属复合管的静动态力学特性[J].应用力学学报,2016,33(1):168-174.(GUO Jianying,MA Tengfei,LIU Shengbao,et al.Static and dynamic mechanical characteristics of bimetallic tubes[J].Chinese journal of applied mechanics,2016,33(1):168-174(in Chinese)).
    [10]FALESKOG J,BARSOUM I.Tension-torsion fracture experiments--part I:experiments and a procedure to evaluate the equivalent plastic strain[J].International journal of solids&structures,2013,50(25/26):4241-4257.
    [11]XUE Z,FALESKOG J,HUTCHINSON J W.Tension-torsion fracture experiments--part II:simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain[J].International journal of solids&structures,2013,50(25/26):4258-4269.
    [12]SCALES M,TARDIF N,KYRIAKIDES S.Ductile failure of aluminum alloy tubes under combined torsion and tension[J].International journal of solids&structures,2016(97/98):116-128.
    [13]CHEN H,LI F,ZHOU S,et al.Experimental study on pure titanium subjected to different combined tension and torsion deformation processes[J].Materials science&engineering A,2016,608:278-290.
    [14]YU G,GAO X,SONG Y.Experimental investigation of the tension-torsion coupling behavior on needled unidirectional C/SiCcomposites[J].Materials science&engineering A,2017,696:190-197.
    [15]LI R H,ZHANG P,ZHANG Z F.Fatigue cracking and fracture behaviors of coarse-grained copper under cyclic tension-compression and torsion loadings[J].Materials science&engineering A,2013,574(4):113-122.
    [16]曲嘉,邹广平,何蕴增.扭转冷作硬化对低碳钢高低应变率力学性能的影响[J].哈尔滨工程大学学报,2010,31(5):596-600.(QUJia,ZOU Guangping,HE Yunzeng.Hardening low-carbon steel by torsional cold-work at high and low strain-rates[J].Journal of Harbin engineering university,2010,31(5):596-600(in Chinese)).
    [17]邹广平,张学义,吴国辉,等.Q235钢筋母材冷作硬化试验研究[J].哈尔滨工程大学学报,2002,23(3):102-104.(ZOU Guangping,ZHANG Xueyi,WU Guohui,et al.Experimental study on cold-work hardening of Q235 reinforcing steel[J].Journal of Harbin engineering university,2002,23(3):102-104(in Chinese)).
    [18]王子兴.金属塑性材料拉伸过程的细观模拟与声发射特性研究[D].大庆:东北石油大学,2013.(WANG Zixing.Research on mesoscopic simulation and acoustic emission characteristic of metal plastic materials in tensile process[D].Daqing:Northeast Petroleum University,2013(in Chinese)).
    [19]HANEEF T,LAHIRI B B,BAGAVATHIAPPAN S,et al.Study of the tensile behavior of AISI type 316 stainless steel using acoustic emission and infrared thermography techniques[J].Journal of materials research&technology,2015,4(3):241-253.
    [20]BARAT K,BAR H N,MANDAL D,et al.Low temperature tensile deformation and acoustic emission signal characteristics of AISI304LN stainless steel[J].Materials science&engineering A,2014,597(597):37-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700