用户名: 密码: 验证码:
辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemistry and zircon U-Pb-Hf isotopes of Paleoproterozoic granitic rocks in Wangjiapuzi area,eastern Liaoning Province,and their geological significance
  • 作者:杨仲杰 ; 王伟 ; 赵岩 ; 周永恒 ; 张璟 ; 孙守亮 ; 刘长纯
  • 英文作者:YANG Zhongjie;WANG Wei;ZHAO Yan;ZHOU Yongheng;ZHANG Jing;SUN Shouliang;LIU Changchun;Geological and Mineral Survey Institute of Liaoning Province;No.103 Geological Party,Nonferrous Geological Bureau for Liaoning Province;Geological and Mineral Resources Institute of Shenyang;
  • 关键词:古元古代花岗岩 ; LA-ICP-MS锆石U-Pb年龄 ; Hf同位素 ; 地球化学 ; 辽东王家堡子地区
  • 英文关键词:Paleoproterozoic granite;;LA-ICP-MS zircon U-Pb age;;Hf isotope;;geochemistry;;Wangjiapuzi area of eastern Liaoning Province
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:辽宁省地质矿产调查院;辽宁省有色地质局一〇三队;中国地质调查局沈阳地调中心;
  • 出版日期:2019-04-15
  • 出版单位:地质通报
  • 年:2019
  • 期:v.38;No.287
  • 基金:中国地质调查局项目《辽东-吉南成矿带永吉—凤城地区地质矿产调查》(编号:DD20160049)
  • 语种:中文;
  • 页:ZQYD201904012
  • 页数:16
  • CN:04
  • ISSN:11-4648/P
  • 分类号:137-152
摘要
辽东王家堡子地区出露大量古元古代花岗质岩石,前人将其统称为花岗质混杂岩。通过详细的野外地质调查和室内综合研究,将该套花岗质混杂岩解体为条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩两类。岩石地球化学分析结果显示二者具有一致的地球化学特征。均显示高SiO_2、富K_2O、贫Al_2O_3的特征,K_2O/Na_2O=0.64~2.14,TiO_2含量为0.16%~0.3%,MnO、MgO、CaO和P_2O_5的含量较低,铝指数A/CNK集中分布在1.06~1.1之间,A/NK在1.50~1.62之间,均属于过铝质高钾钙碱性系列;微量元素显示强烈亏损Nb、Ti、Ta等高场强元素,富集Rb、U、K等大离子亲石元素,具有明显的负Eu异常,具有A型花岗岩的特征。条痕状黑云母二长花岗岩大部分锆石为具有清晰振荡环带的岩浆锆石,LA-ICP-MS锆石U-Pb年龄为2188±13Ma,代表该岩石的岩浆结晶年龄。片麻状黑云母二长花岗岩大部分锆石具有明显的变质增生边,部分核部锆石具有清晰的振荡环带,LA-ICP-MS锆石U-Pb测年获得核部年龄为2214±16Ma,代表该岩石的岩浆结晶年龄;增生边年龄为1905±13Ma,应代表该岩石的变质年龄。条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩的Hf同位素模式年龄分别为2387~2584Ma和2474~2641Ma,平均地壳模式年龄分别为2495~2808Ma和2633~2868Ma,大于岩石形成年龄,暗示研究区古元古代花岗岩源区主要为太古宙基底,混有少量古元古代新生地壳。结合前人报道的埃达克质花岗闪长岩的形成环境,认为胶-辽-吉古元古代造山/活动带早期经历了2.2~2.15Ga的拉伸裂解过程和2.0Ga左右俯冲挤压的构造演化过程。
        Paleoproterozoic granites are widely distributed in the Wangjiapuzi area of eastern Liaoning Province. In the past, some granitic plutons were considered as granitic melange in this area. In this paper, the authors divided the granitic melange into two types, i.e., striate biotite monzogranites and gneissic biotite monzogranites, on the basis of comprehensive studies of field observation, petrography, geochemistry and isotope chronology. The results of geochemical analysis show that the two components are homogeneous, having uniform geochemical characteristics. They all show high SiO_2\, rich K_2 O and poor Al_2 O_3 features, with K_2 O/Na_2 O being 0.64~2.14. Their TiO_2 values are between 0.16% and 0.3%, with lower MnO, MgO, CaO and P_2 O_5 content. The saturation index A/CNK is between 1.06 and 1.1, and A/NK is between 1.50 and 1.62, which suggests that the granodiorites should belong to the peraluminum calcium alkaline series. Some trace elements show that high field strength elements such as Nb, Ti, Ta are strongly depleted, with an obvious anomaly of negative Eu. All the geochemical characteristics suggest that they should belong to Atype granites.The most zircon grains of striate biotite monzogranites show clear oscillating zoning structures, and LA-ICP-MS zircon U-Pb weighted mean age is 2188±13 Ma(MSWD=0.49), with the age of magma crystallization representing the age of the rock.The most zircons of gneissic biotite monzogranites show obvious metamorphic edge, zircons from the part of the nucleus show clear oscillating zoning structures. LA-ICP-MS nucleus zircon U-Pb weighted mean age is 2214±16 Ma(MSWD=1.01), with the age of magma crystallization representing the age of the rock. LA-ICP-MS edge zircon U-Pb weighted mean age is 1905±13 Ma(MSWD=4.5), representing the age of metamorphic rock. The model ages of these two types of granites obtained from Hf isotope are respectively 2387~2584 Ma and 2474~2641 Ma,the average of the crustal pattern is 2495~2808 Ma and 2633~2868 Ma,older than the age of rock formation. The source area of Paleoproterozoic granite in the study area was mainly Archean basement mixed with a small amount of Paleozoic Neoproterozoic crust. The formation environment of the dike granite diorite is reported by some geologists. It is shown that the early rising of the Jiao-Liao-Ji orogenic/activity belts experienced a tensile cracking process at about2.2~2.15 Ga, and then there was a process of subduction and compression around 2.0 Ga.
引文
[1]Windley B.Proterozoic Collisional and Accretionary Orogens[C]//Condie K C.Proterozoic Crustal Evolution.Amsterdam:Elsevier,1992:419-446.
    [2]Smith T E.Volcanic Rocks of Early Proterozoic Greenstone Belts[C]//Condie K C.Proterozoic Crustal Evolution.Amsterdam:Elsevier,1992:7-54.
    [3]Rogers J W,Santosh M.Confignration of Columbia,a Mesoproterozoic Supercontinent[J].Gondwana Research,2002,5(1):5-22.
    [4]Zhao G C,Sun M,Wilde S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005,136(2):177-202.
    [5]Faure M,Lin W,Monie P,et al.Palaeoproterozoic Arc Magmatism and Collision in Liaodong Peninsula(Northeast China)[J].Terra Nova,2004,16(2):75-80.
    [6]Sun M,Armstrong R L,Lambert R S J,er al.Petrochemistry and Sr,Pb and Nd Isotopic Geochemistry of the Paleoproterozoic Kuandian Complex,the eastern Liaoning Province,China[J].Precambrian Research,1993,63(1/2):171-190.
    [7]Li S Z,Zhao G C,Santosh M,et al.Paleoproterozoi Tectonothermal Evolution and Deep Crustal Processes in the JiaoLiao-Ji Belt,North China Craton:A Review[J].Geological Journal,2011,46(6):525-543.
    [8]Zhai M G,Liu W J.Paleoproterozoic Tectonic History of the North China Craton:A Review[J].Precambrian Research,2003,122(1/2/3/4):183-199.
    [9]Zhai M G,Santosh M.The Early Precambrian Odyssey of North China Craton:A Synoptic Overview[J].Gondwana Research,2011,20(1):6-25.
    [10]杨明春,陈斌,闫聪.华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义[J].地球科学与环境学报,2015,37(5),31-51.
    [11]张秋生,杨振生.辽东半岛早期地壳与矿[M].北京:地质出版社,1988:57.
    [12]李三忠,郝德峰,赵国春,等.丹东花岗岩的地球化学特征及其成因[J].岩石学报,2004,20(6):1417-1423.
    [13]Li S Z,Zhao G C,Sun M,et al.Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton[J].Joumal of Asian Earth Sciences,2005,24(5):659-674.
    [14]Li S Z,Zhao G C,Sun M,et al.Are the South and North Liaohe groups of North China Craton different exotic terranes?Nd isotope constraints[J].Gondwana Research,2006,9(1/2):198-208.
    [15]Li S Z,Zhao G C.SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji Belt,in the Eastenr Block of the North China Craton[J].Precambrian Research,2007,158(1/2):1-16.
    [16]Luo Y,Sun M,Zhao G C,et al.LA-ICP-MS U-Pb zircon ages of the Liaohe Croup in the Eastern Block of the North China Craton:Constraints on the evolution of the Jiao-Liao-Ji Belt[J].Precambrian Research,2004,134(3/4):349-371.
    [17]Luo Y,Sun M,Zhao G C,et al.A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups:Constraints on the evolution of the Jiao-Liao-Ji Belt,North China Craton[J].Precambrian Research,2008,163(3/4):279-306.
    [18]白瑾,戴凤岩.中国早前寒武纪的地壳演化[J].地球学报,1994,15(Z1):73-84.
    [19]陈井胜,蒋职权,李崴崴,等.辽宁本溪连山关地区辽河群浪子山组、里尔峪组形成时代及其地质意义[J].地质通报,2018.2018,37(9):1693-1703.
    [20]Faure M,Lin W,Monie P,et al.Palaeoproterozoic arcmagmatism and collision in Liaodong Peuiusula(north-east China)[J].Terra Nova,2004,16(2):75-80.
    [21]Lu X P,Wu F Y,Guo J H,et al.Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern Block in the North China Craton[J].Precambrian Research,2006,146(3/4):138-164.
    [22]贺高品,叶惠义.辽东-吉南地区早元古代两种类型变质作用及其构造意义[J].岩石学报,1998,14(2):152-162.
    [23]Zhao G C.Cawood P A.Li S G,et al.Amalgamation of the North China Craton:Key issues and discussion[J].Precambrian Research,2012,222/223:55-76.
    [24]刘福来,刘平华,王舫,等.胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J].岩石学报,2015,31(10):2816-2846.
    [25]钟长汀,邓晋福,武永平,等.华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构意义[J].地质通报,2006,25(3):389-397.
    [26]Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb Dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology,2010,51(1/2):537-571.
    [27]Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546.
    [28]Ludwig K R.User’s manual for Isoplot 3.0:A geochronological toolkit for Microsoft Excel[M].Berkeley Geochronology Center Special Publication,2003:1-20
    [29]Wu F Y,Yang Y H,Xie L W,et al.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J].Chem.Geol.,2006,234:105-126.
    [30]Goolaerts A,Mattielli N,De Jong J,et al.Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS[J].Chem.Geol.,2004,206:1-9.
    [31]Woodhead J,Hergt J,Shelley M,et al.Zircon Hf-isotope analysis with an excimer laser,depth profiling,ablation of complex geometries,and concomitant age estimation[J].Chem.Geol.,2004,209:121-135.
    [32]Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth Science Reviews,1994,37(3/4):215-224.
    [33]Le Maitre R W.A Classification of Igneous Rocks and Glossary of Term:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M].Oxford,UK:Blackwell,1989:1-193.
    [34]Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and minor lements[J].Lithos,1989,22(4):247-263.
    [35]Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
    [36]Sun S S,McDonough W F.Chemical and isotopic systematic of oceanic basalts:Implications for mantle composition and process-es[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geological Society,London,Special Publicatin,1989,42(1):313-345.
    [37]Griffin W L,Pearson N J,Belousova E,et al.The Hf isotope composition of cratonic mantie:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochim Cosmochim Acta,2000,64:133-147.
    [38]Soderlund U,Patchett P J,Vervoort J D,et al.The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J].Earth Planet.Sci.Lett.,2004,219:311-324.
    [39]杨进辉,吴福元,谢烈文,等.辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U-Pb年龄和Hf同位素制约[J].岩石学报,2007,23(2):263-276.
    [40]王祥俭,刘建辉,冀磊.胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J].岩石学报,2017,33(9):2689-2707.
    [41]郝德峰,李二忠,赵国春,等.辽吉地区古元古代花岗岩成因及对构造演化的制约[J].岩石学报,2004,20(6):1409-1416.
    [42]路孝平,吴福元,张艳斌,等.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景[J].岩石学报,2004,20(3):381-392.
    [43]路孝平,吴福元,林景仟,等.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J].地质科学,2004,39(1):123-138.
    [44]Li Z,Chen B,Wei C J.Is the Paleoproterozoic Jiao-Liao-Ji Belt(North China Craton)a rift ntemational[J].Journal of Earth Sciences,2017,106(1):355-375.
    [45]李超,陈斌,李壮,等.辽东岫岩-宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义[J].岩石学报,2017,33(3):963-977.
    [46]王鹏森,董永胜,李富强,等.辽东黄花甸地区古元古代花岗质岩浆作用及其地质意[J].岩石学报,2017,33(3):2708-2724.
    [47]Collies W J,Beams S D,White A J R,et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80(2):189-200.
    [48]Whalen J B,Currie K L,Chappell B W.A-type granites:Geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95(4):407-419.
    [49]Eby G N.The A-type granitoids:A reviera of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos,1990,26(1/2):15-134.
    [50]Frost B R,Barnes C G,Colins W J,et al.A geochemical classification for granitic rocks[J].Journal of Petrology,2001,42(11):2033-2048.
    [51]Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J].Geology,1992,20(7):641-644.
    [52]Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25:956-983.
    [53]Creaser R A,Price R C,Wormald R J.A-type granites revisited:Assessment of a residual-source model[J].Geology,1991,19(2):163-166.
    [54]Patino Douce A E.Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J].Geology,1997,25(8):743-746.
    [55]张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269.
    [56]King P L,White A J R,Chappell B W,et al.Characterization and origin of aluminous A-type granites from the Lachlan Fold belt,southeastern Australia[J].Journal of Petrology,1997,38(3):371-391.
    [57]张旗,冉皞,李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志,2012,31(4):621-626.
    [58]Allègre C J,Minster J F.Quantitative models of trace element behavior in magmatic processes[J].Earth and Planetary Science Letters,1978,38(1):1-25.
    [59]张旗,王焰,李承东,等.花岗岩按照压力的分类[J].地质通报,2006,25(11):1274-1278.
    [60]Zhao G C,Sun M,Wilde S A.Major tectonic units of the North China Craton and their Paleoproterozoic assembly[J].Science in China(Series D),2003,46(1):23-38.
    [61]翟明国,彭澎.华北克拉通古元古代构造事件[J].岩石学报,2007,23(11):2665-2685.
    [62]李富强,董永胜,王鹏森,等.南辽河群斜长角闪岩的地球化学特征及地质意义:以三家子地区为例[J].世界地质,2017,36(1):82-92.
    [63]高铂森,董永胜,李富强.辽东黄花甸地区南辽河群里尔峪组成因研究[J].岩石学报,2017,33(9):2725-2742.(1)
    (1)辽宁省地质局第五地质大队.辽宁省1∶5万王家堡子、板子屯、小偏岭等幅区域地质调查报告. 1981.
    (2)辽宁省地质矿产调查院. 1∶25万丹东市、东港市幅区域地质调查成果报告. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700