用户名: 密码: 验证码:
我国典型陆地生态系统水化学离子特征及空间分布
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ion Concentrations and Their Spatial Variability in Underground Water and Surface Water in Typical Terrestrial Ecosystems in China
  • 作者:黄丽 ; 张心昱 ; 袁国富 ; 朱治林 ; 唐新斋 ; 孙晓敏
  • 英文作者:HUANG Li;ZHANG Xin-yu;YUAN Guo-fu;ZHU Zhi-lin;TANG Xin-zhai;SUN Xiao-min;Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;College of Resources and Environment,University of Chinese Academy of Sciences;
  • 关键词:典型陆地生态系统 ; 地下水 ; 静止地表水 ; 流动地表水 ; 水化学类型 ; 主要离子
  • 英文关键词:typical terrestrial ecosystem;;underground water;;still surface water;;flowing surface water;;hydrochemistry type;;major ion
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室;中国科学院大学资源与环境学院;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFC0503801)
  • 语种:中文;
  • 页:HJKZ201905011
  • 页数:8
  • CN:05
  • ISSN:11-1895/X
  • 分类号:90-97
摘要
选择中国生态系统研究网络(CERN)和国家生态系统观测研究网络(CNERN)中的33个陆地生态站水化学监测数据,分析了2010~2015年我国典型陆地生态系统地下水、静止地表水和流动地表水水化学离子特征及空间分布.结果表明,水中主要阴离子质量浓度为:HCO_3~-> SO_4~(2-)> Cl~-> CO_3~(2-),以HCO_3~-和SO_4~(2-)为主,在地下水、静止地表水、流动地表水中HCO_3~-和SO_4~(2-)之和分别约占阴离子总量的71. 7%、75. 3%和74. 9%;阳离子以Ca2+和Na+为主,两者之和分别约占阳离子总量的69. 7%、64. 8%和68. 9%.不同生态区域水体离子浓度和离子比例差异较大,水化学类型有地带性差异,即西北干旱半干旱区、东部黄淮海平原区生态系统地下水水化学类型以Na-Mg-SO4-Cl型为主,且水体矿化度较高;亚热带红壤丘陵区地下水水化学类型以Ca-SO_4-HCO_3型为主,地表水以Ca-HCO_3-SO_4型为主;南亚热带丘陵赤红壤区地下水水化学类型以NaCa-HCO_3-Cl型为主;其它生态系统水化学类型以Ca-HCO_3型和Ca-Mg-HCO_3为主.地下水、静止地表水和流动地表水的水化学类型年际间无明显变化.
        The water chemistry data monitored during 2010-2015 by 33 terrestrial ecological stations from the Chinese Ecosystem Research Network( CERN) and the National Ecosystem Research Network of China( CNERN) were used to characterize ion concentrations and their spatial variability in underground water,still surface water,and flowing surface water from typical terrestrial ecosystems. The results showed the presence of mass-based concentrations of major anions,including HCO_3~-> SO_4~(2-)> Cl-> CO_3~(2-).Among them,HCO3-and SO_4~(2-)were dominant,and their sums accounted for 71. 7%,75. 3%,and 74. 9% of the total anions in underground water,still surface water,and flowing surface water,respectively. Cations were mainly Ca_2~+ and Na+,and their sums accounted for 69. 7%,64. 8%,and 68. 9% of the total cations in underground water,still surface water,and flowing surface water,respectively. The ion concentration and ion ratio in the underground water,still surface water,and flowing surface water differed largely among the studied regions. The hydrochemical type varied regionally,e. g.,Na-Mg-SO_4-Cl type,usually with high content of salinity,was found in the underground water of ecological systems in the Northwest arid and semiarid areas and in the East Huanghuaihai Plain;Ca-SO_4-HCO_3 type in underground water and Ca-HCO_3-SO_4 type in surface water were found in hilly areas with subtropical red soil;Na-Ca-HCO_3-Cl type was present in underground water of south hilly areas with subtropical latosolic red soil; and Ca-HCO_3 and Ca-MgHCO_3 types were found in other ecological systems. Hydrochemical types had low inter-annual variation for both underground water and surface water.
引文
[1]陈静生,陶澎,邓宝山,等.水环境化学[M].北京:高等教育出版社,1987.45-46.
    [2]Gao Z Y,Lin Z J,Niu F J,et al.Hydrochemistry and controlling mechanism of lakes in permafrost regions along the Qinghai-Tibet Engineering Corridor,China[J].Geomorphology,2017,297:159-169.
    [3]Kim J H,Kim K H,Thao N T,et al.Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling:A study of Red River delta aquifer,Vietnam[J].Journal of Hydrology,2017,549:703-714.
    [4]Beyer M,Jackson B,Daughney C,et al.Use of hydrochemistry as a standalone and complementary groundwater age tracer[J].Journal of Hydrology,2016,543:127-144.
    [5]Yidana S M,Bawoyobie P,Sakyi P,et al.Evolutionary analysis of groundwater flow:application of multivariate statistical analysis to hydrochemical data in the Densu Basin,Ghana[J].Journal of African Earth Sciences,2018,138:167-176.
    [6]胡春华,童乐,万齐远,等.环鄱阳湖浅层地下水水化学特征的时空变化[J].环境化学,2013,32(6):974-979.Hu C H,Tong L,Wan Q Y,et al.Spatial and temporal variation of shallow groundwater chemical characteristics around Poyang Lake[J].Environmental Chemistry,2013,32(6):974-979.
    [7]姜体胜,曲辞晓,王明玉,等.北京平谷平原区浅层地下水化学特征及成因分析[J].干旱区资源与环境,2017,31(11):122-127.Jiang T S,Qu C Q,Wang M Y,et al.Hydrochemical characteristics of shallow groundwater and origin in the Pinggu plain,Beijing[J].Journal of Arid Land Resources and Environment,2017,31(11):122-127.
    [8]章光新,邓伟,何岩,等.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,17(1):20-28.Zhang G X,Deng W,He Y,et al.Hydrochemical characteristics and evolution laws of groundwater in Songnen Plain,northeast China[J].Advances in Water Science,2006,17(1):20-28.
    [9]Chen J S,Wang F Y,Xia X H,et al.Major element chemistry of the Changjiang(Yangtze River)[J].Chemical Geology,2002,187(3-4):231-255.
    [10]Zhang J,Huang W W,Létolle R,et al.Major element chemistry of the Huanghe(Yellow River),China-weathering processes and chemical fluxes[J].Journal of Hydrology,1995,168(1-4):173-203.
    [11]张涛,蔡五田,李颖智,等.尼洋河流域水化学特征及其控制因素[J].环境科学,2017,38(11):4537-4545.Zhang T,Cai W T,Li Y Z,et al.Major ionic features and their possible controls in the water of the Niyang River basin[J].Environmental Science,2017,38(11):4537-4545.
    [12]秦勇,张东,赵志琦.沁河流域水化学组成的空间和时间变化特征[J].生态学杂志,2016,35(6):1516-1524.Qin Y,Zhang D,Zhao Z Q.Spatial and temporal variations of hydrochemical compositions of river water in Qinhe basin[J].Chinese Journal of Ecology,2016,35(6):1516-1524.
    [13]刘江涛,蔡五田,曹月婷,等.沁河冲洪积扇地下水水化学特征及成因分析[J].环境科学,2018,39(12):5428-5439.Liu J T,Cai W T,Cao Y T,et al.Hydrochemical characteristics of groundwater and the origin in Alluvial-proluvial fan of Qinhe river[J].Environmental Science,2018,39(12):5428-5439.
    [14]张清华,孙平安,何师意,等.西藏拉萨河流域河水主要离子化学特征及来源[J].环境科学,2018,39(3):1065-1075.Zhang Q H,Sun P A,He S Y,et al.Fate and origin of major ions in river water in the Lhasa River basin,Tibet[J].Environmental Science,2018,39(3):1065-1075.
    [15]孙平安,于奭,莫付珍,等.不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J].环境科学,2016,37(1):123-131.Sun P A,Yu S,Mo F Z,et al.Hydrochemical characteristics and influencing factors in different geological background:a case study in Darongjiang and Lingqu basin,Guangxi,China[J].Environmental Science,2016,37(1):123-131.
    [16]韩知明,贾克力,孙标,等.呼伦湖流域地表水与地下水离子组成特征及来源分析[J].生态环境学报,2018,27(4):744-751.Han Z M,Jia K L,Sun B,et al.Component characteristics and sources of ions in surface water and groundwater of Hulun Lake Basin[J].Ecology and Environmental Sciences,2018,27(4):744-751.
    [17]周嘉欣,丁永建,曾国雄,等.疏勒河上游地表水水化学主离子特征及其控制因素[J].环境科学,2014,35(9):3315-3324.Zhou J X,Ding Y J,Zeng G X,et al.Major ion chemistry of surface water in the upper reach of Shule river basin and the possible controls[J].Environmental Science,2014,35(9):3315-3324.
    [18]蒲焘,何元庆,朱国锋,等.丽江盆地地表-地下水的水化学特征及其控制因素[J].环境科学,2012,33(1):48-54.Pu T,He Y Q,Zhu G F,et al.Geochemistry of surface and ground water in the Lijiang basin,northwest Yunnan[J].Environmental Science,2012,33(1):48-54.
    [19]唐玺雯,吴锦奎,薛丽洋,等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014,35(1):131-142.Tang X W,Wu J K,Xue L Y,et al.Major ion chemistry of surface water in the Xilin river basin and the possible controls[J].Environmental Science,2014,35(1):131-142.
    [20]中国生态系统研究网络科学委员会.陆地生态系统水环境观测规范[M].北京:中国环境科学出版社,2007.
    [21]张心昱,孙晓敏,袁国富,等.中国生态系统研究网络水体p H和矿化度监测数据初步分析[J].地球科学进展,2009,24(9):1042-1050.Zhang X Y,Sun X M,Yuan G F,et al.Primary analysis of water pH and salinity monitoring data on Chinese Ecosystem Research Network(CERN)[J].Advances in Earth Science,2009,24(9):1042-1050.
    [22]徐志伟,张心昱,孙晓敏,等.2004~2009年我国典型陆地生态系统地下水硝态氮评价[J].环境科学,2011,32(10):2827-2833.Xu Z W,Zhang X Y,Sun X M,et al.Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network(CERN)during 2004-2009[J].Environmental Science,2011,32(10):2827-2833.
    [23]Zhang X Y,Xu Z W,Sun X M,et al.Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China,2004-2010[J].Journal of Environmental Sciences,2013,25(5):1007-1014.
    [24]Xu Z W,Zhang X Y,Xie J,et al.Total nitrogen concentrations in surface water of typical agro-and forest ecosystems in China,2004-2009[J].PLo S One,2014,9(3):e92850.
    [25]Xie J,Zhang X Y,Xu Z W,et al.Total phosphorus concentrations in surface water of typical agro-and forest ecosystems in China,2004-2010[J].Frontiers of Environmental Science&Engineering,2014,8(4):561-569.
    [26]袁国富,张心昱,唐新斋,等.陆地生态系统水环境观测质量保证与质量控制[M].北京:中国环境科学出版社,2012.
    [27]施建平,杨林章.陆地生态系统土壤观测质量保证与质量控制[M].北京:中国环境科学出版社,2012.
    [28]唐克旺,侯杰,唐蕴.中国地下水质量评价(Ⅰ)---平原区地下水水化学特征[J].水资源保护,2006,22(2):1-5.Tang K W,Hou J,Tang Y.Assessment of groundwater quality in China:Ⅰ.Hydrochemical characteristics of groundwater in plain area[J].Water Resources Protection,2006,22(2):1-5.
    [29]Gibbs R J.Mechanisms controlling world water chemistry[J].Science,1970,170(3962):1088-1090.
    [30]乐嘉祥,王德春.中国河流水化学特征[J].地理学报,1963,29(1):1-13.
    [31]Hu M H,Stallard R F,Edmond J M.Major ion chemistry of some large Chinese rivers[J].Nature,1982,298(5):550-553.
    [32]徐利岗,周宏飞,潘锋,等.三工河流域山地-绿洲-荒漠系统降水空间变异性研究[J].地理学报,2016,71(5):731-742.Xu L G,Zhou H F,Pan F,et al.Spatial variability of precipitation for mountain-oasis-desert system in the Sangong River Basin[J].Acta Geographica Sinica,2016,71(5):731-742.
    [33]Zhu B Q,Yang X P,Rioual P,et al.Hydrogeochemistry of three watersheds(the Erlqis,Zhungarer and Yili)in northern Xinjiang,NW China[J].Applied Geochemistry,2011,26(8):1535-1548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700