用户名: 密码: 验证码:
A dendrite-free Li plating host towards high utilization of Li metal anode in Li–O_2 battery
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A dendrite-free Li plating host towards high utilization of Li metal anode in Li–O_2 battery
  • 作者:Chao ; Li ; Jishi ; Wei ; Panlong ; Li ; Wenfei ; Tang ; Wuliang ; Feng ; Jingyuan ; Liu ; Yonggang ; Wang ; Yongyao ; Xia
  • 英文作者:Chao Li;Jishi Wei;Panlong Li;Wenfei Tang;Wuliang Feng;Jingyuan Liu;Yonggang Wang;Yongyao Xia;Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University;
  • 英文关键词:Li metal anode;;Li utilization;;Li-O_2 battery;;Dendrite-free;;High energy density
  • 中文刊名:JXTW
  • 英文刊名:科学通报(英文版)
  • 机构:Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University;
  • 出版日期:2019-04-15
  • 出版单位:Science Bulletin
  • 年:2019
  • 期:v.64
  • 基金:supported by the National Natural Science Foundation of China (21622303);; the National Basic Research Program of China (2016YFA0203302)
  • 语种:英文;
  • 页:JXTW201907013
  • 页数:7
  • CN:07
  • ISSN:10-1298/N
  • 分类号:66-72
摘要
The intense interest of Li–O_2 battery stems from its ultrahigh theoretical energy density, but its application is still hindered by the issues of Li anode. Herein, RuO_2-CNTs composite, a conventional O_2 cathode catalyst in Li–O_2 battery, is first utilized as an anode host for dendrite-free Li plating/stripping with high Coulombic efficiency. It is demonstrated that such excellent plating/stripping performance arises from the lithiophilicity characteristic of Ru nanoparticles(that is derived from the in-situ electrochemical conversion from RuO_2 to Ru/Li_2O) and buffer space provided by CNTs. Furthermore, the RuO_2-CNTs electrode pre-deposited with limited Li(RuO_2-CNTs@Li anode) is coupled with a RuO_2-CNTs catalytic cathode to form a Li–O_2 full cell, which displays an extended cycle life with dramatically improved energy density.The achieved cell shows a high stability of 200 cycles with RuO_2-CNTs@Li anode(1 mg Li) that sheds light on the efficient utilization of Li anode in Li–O_2 batteries.
        The intense interest of Li–O_2 battery stems from its ultrahigh theoretical energy density, but its application is still hindered by the issues of Li anode. Herein, RuO_2-CNTs composite, a conventional O_2 cathode catalyst in Li–O_2 battery, is first utilized as an anode host for dendrite-free Li plating/stripping with high Coulombic efficiency. It is demonstrated that such excellent plating/stripping performance arises from the lithiophilicity characteristic of Ru nanoparticles(that is derived from the in-situ electrochemical conversion from RuO_2 to Ru/Li_2O) and buffer space provided by CNTs. Furthermore, the RuO_2-CNTs electrode pre-deposited with limited Li(RuO_2-CNTs@Li anode) is coupled with a RuO_2-CNTs catalytic cathode to form a Li–O_2 full cell, which displays an extended cycle life with dramatically improved energy density.The achieved cell shows a high stability of 200 cycles with RuO_2-CNTs@Li anode(1 mg Li) that sheds light on the efficient utilization of Li anode in Li–O_2 batteries.
引文
[1]Aurbach D,Mccloskey BD,Nazar LF,et al.Advances in understanding mechanisms underpinning lithium-air batteries.Nat Energy 2016;1:16128.
    [2]Geng D,Ding N,Andy Hor TS,et al.From lithium-oxygen to lithium-air batteries:challenges and opportunities.Adv Energy Mater 2016;6:1502164.
    [3]Feng N,He P,Zhou H.Critical challenges in rechargeable aprotic Li-O2batteries.Adv Energy Mater 2016;6:1502303.
    [4]Lu J,Lee YJ,Luo X,et al.A lithium-oxygen battery based on lithium superoxide.Nature 2016;529:377-82.
    [5]Guo X,Sun B,Su D,et al.Recent developments of aprotic lithium-oxygen batteries:functional materials determine the electrochemical performance.Sci Bull 2017;62:442-52.
    [6]Xu SM,Liang X,Ren ZC,et al.Free-standing air cathodes based on 3Dhierarchically porous carbon membranes:kinetic overpotential of continuous macropores in Li-O2batteries.Angew Chem Int Ed 2018;57:6825-9.
    [7]Yang ZD,Chang ZW,Zhang Q,et al.Decorating carbon nanofibers with Mo2Cnanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2batteries.Sci Bull 2018;63:433-40.
    [8]Jung HG,Hassoun J,Park JB,et al.An improved high-performance lithium-air battery.Nat Chem 2012;4:579-85.
    [9]Liu T,Frith JT,Kim G,et al.The effect of water on quinone redox mediators in nonaqueous Li-O2batteries.J Am Chem Soc 2018;140:1428-37.
    [10]Zhang Y,Wang L,Zhang X,et al.High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li-O2battery.Adv Mater 2017;30:1705571.
    [11]Zhang J,Sun B,Zhao Y,et al.Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2batteries.Angew Chem Int Ed2017;56:8505-9.
    [12]Giordani V,Tozier D,Tan H,et al.A molten salt lithium-oxygen battery.J Am Chem Soc 2016;138:2656-63.
    [13]Guo Z,Li C,Liu J,et al.A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator.Angew Chem Int Ed2017;56:7505-9.
    [14]Zhu J,Yang J,Zhou J,et al.A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries.J Power Sources2017;366:265-9.
    [15]Kim Y,Koo D,Ha S,et al.Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries.ACS Nano2018;12:4419-14330.
    [16]Zhang X,Zhang Q,Wang XG,et al.An extremely simple method for protecting lithium anodes in Li-O2batteries.Angew Chem Int Ed 2018;57:12814-8.
    [17]Wu S,Zhu K,Tang J,et al.A long-life lithium ion oxygen battery based on commercial silicon particles as the anode.Energy Environ Sci 2016;9:3262-71.
    [18]Xu JJ,Liu QC,Yu Y,et al.In Situ Construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithiumoxygen batteries.Adv Mater 2017;29:1606552.
    [19]Lin D,Liu Y,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat NanoTechnol 2017;12:194-206.
    [20]Guo Y,Li H,Zhai T.Reviving lithium-metal anodes for next-generation highenergy batteries.Adv Mater 2017;29:1700007.
    [21]Liu S,Wang A,Li Q,et al.Crumpled graphene balls stabilized dendrite-free lithium metal anodes.Joule 2018;2:184-93.
    [22]Zhang R,Chen XR,Chen X,et al.Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes.Angew Chem Int Ed 2017;56:7764-8.
    [23]Liu L,Yin YX,Li JY,et al.Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes.Adv Mater 2018;30:1706216.
    [24]Fan L,Wei S,Li S,et al.Recent progress of the solid-state electrolytes for highenergy metal-based batteries.Adv Energy Mater 2018;8:1702657.
    [25]Qian J,Henderson WA,Xu W,et al.High rate and stable cycling of lithium metal anode.Nat Commun 2015;6:6362.
    [26]Han X,Gong Y,Fu K,et al.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater 2017;16:572-9.
    [27]Gu Y,Wang WW,Li YJ,et al.Designable ultra-smooth ultra-thin solidelectrolyte interphases of three alkali metal anodes.Nat Commun2018;9:1339.
    [28]Fan X,Chen L,Ji X,et al.Highly fluorinated interphases enable high-voltage Limetal batteries.Chem 2018;4:174-85.
    [29]Xie J,Liao L,Gong Y,et al.Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode.Sci Adv 2017;3:eaao3170.
    [30]Assegie AA,Cheng JH,Kuo LM,et al.Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.Nanoscale2018;10:6125-38.
    [31]Yan C,Yao YX,Chen X,et al.Solvation chemistry of lithium nitrate in carbonate electrolyte for high-voltage lithium metal battery.Angew Chem Int Ed2018;57:14055-9.
    [32]Zuo TT,Wu XW,Yang CP,et al.Graphitized carbon fibers as multifunctional 3Dcurrent collectors for high areal capacity Li anodes.Adv Mater2017;29:1700389.
    [33]Zhang C,Lv W,Zhou G,et al.Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode.Adv Energy Mater 2018;8:1703404.
    [34]Jin C,Sheng O,Luo J,et al.3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries.Nano Energy2017;37:177-86.
    [35]Jian Z,Liu P,Li F,et al.Core-shell-structured CNT@RuO2composite as a highperformance cathode catalyst for rechargeable Li-O2batteries.Angew Chem Int Ed 2014;53:442-6.
    [36]Gregorczyk KE,Kozen AC,Chen X,et al.Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2lithium-ion battery electrodes through a RuO2atomic layer deposition process.ACS Nano 2015;9:464-73.
    [37]Balaya BP,Li H,Kienle L,et al.Reversible homogeneous and heterogeneous Li storage in RuO2with high capacity.Adv Func Mater 2003;13:621-5.
    [38]Delmer BO,Balaya P,Kienle L,et al.Enhanced potential of amorphous electrode materials:case study of RuO2.Adv Mater 2008;20:501-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700