用户名: 密码: 验证码:
水中脉冲放电压裂抽采煤层气机理与数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism and numerical simulation of CBM extraction by pulsed discharge fracturing in water
  • 作者:鲍先凯 ; 曹嘉星 ; 段东明 ; 赵金昌 ; 武晋文
  • 英文作者:Bao Xiankai;Cao Jiaxing;Duan Dongming;Zhao Jinchang;Wu Jinwen;School of Civil Engineering, Inner Mongolia University of Science and Technology;School of Mining Technology, Taiyuan University of Technology;School of Science, North University of China;
  • 关键词:高压电脉冲 ; 水中放电 ; 裂隙 ; 断裂能量 ; RFPA-Dynamic
  • 英文关键词:high-voltage electrical pulse;;discharge in water;;crack;;break energy;;RFPA-Dynamic
  • 中文刊名:KTDQ
  • 英文刊名:Reservoir Evaluation and Development
  • 机构:内蒙古科技大学土木工程学院;太原理工大学矿业工程学院;中北大学理学院;
  • 出版日期:2019-04-26
  • 出版单位:油气藏评价与开发
  • 年:2019
  • 期:v.9
  • 基金:内蒙古自然科学基金“基于高压电脉冲水压致裂的低渗透性煤层气解吸增透效果试验研究”(2016MS0511);; 国家自然基金青年科学基金项目“岩石高温三轴压裂机理研究”(51504220);; 山西省自然科学基金“静水压力作用下脉冲放电水激波不同速率动载组合致裂低渗透煤层机理研究”(201701D121132)
  • 语种:中文;
  • 页:KTDQ201902015
  • 页数:4
  • CN:02
  • ISSN:32-1825/TE
  • 分类号:74-77
摘要
为了提高低渗透性煤体煤层气的开采效率,提出了水中脉冲放电压裂抽采煤层气技术,研究了水中高压电脉冲放电机理和煤体裂隙断裂扩展机理,并应用RFPA-Dynamic进行能量数值模拟计算。研究结果表明:在相同静水压力作用下,随着放电能量的增加,煤体产生裂隙更多,裂隙长度更长,宽度更宽,钻孔周围裂隙密度也更大。裂隙尖端应力随着加载时间和放电能量的增加而增加,裂隙更容易扩展。研究结果可为煤层气的开采提供一定的理论依据。
        In order to improve the production efficiency of coal-bed methane with low permeability,we proposed the CBM fracturing and recovery technique with pulsed discharge in water,studied the mechanism of high-voltage electrical pulse discharge in water and the fracture mechanism of coal fractures,and calculated the numerical simulation of energy by RFPA-Dynamic.The results showed that under the same hydrostatic pressure,and with the increase of discharge energy,the fissures increased,the fissure length got longer,the width got wider,and the fissure density around the borehole got larger.The tip stress of the fissure increased with the loading time and the discharge energy,so that the fissures expanded more easily.The research results could provide certain theoretical basis for the exploitation of CBM.
引文
[1]严绪朝,郝鸿毅.我国的煤层气及其开发利用现状和前景[J].石油科技论坛,2007,26(5):4-9.
    [2]赵阳升,杨栋,胡耀青,等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455-458.
    [3]李守国.高压空气爆破煤层增透关键技术与装备研发[J].煤炭科学技术,2015,43(2):92-95.
    [4]袁亮,薛俊华,张农,等.煤层气抽采和煤与瓦斯共采关键技术现状与展望[J].煤炭科学技术,2013,41(09):6-11+17.
    [5]李守山,姜文忠,贾宝山,等.低透气性煤层致裂增透技术应用与展望[J].煤炭科学技术,2017,45(6):35-42.
    [6]袁亮,薛生.煤层瓦斯含量法确定保护层开采消突范围的技术及应用[J].煤炭学报,2014,39(9):1786-1791.
    [7]张宏伟,付兴,霍丙杰,等.低透煤层保护层开采卸压效果试验[J].安全与环境学报,2017,17(6):2134-2139.
    [8]赵振保.变频脉冲式煤层注水技术研究[J].采矿与安全工程学报,2008,25(4):486-489.
    [9]汪虎,武光辉,耶毅刚,等.煤层注水技术在高瓦斯矿井的应用展望[J].科技创新与应用,2015,5(7):58.
    [10]赵阳升,杨栋,胡耀青,等.低渗透煤储煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455-458.
    [11]王兆丰,刘军.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,2005,36(3):241-246.
    [12]李同林.水压致裂煤层裂缝发育特点的研究[J].地球科学,1994,19(4):537-545.
    [13]鲍先凯,杨东伟,段东明,等.高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J].岩石力学与工程学报,2017,36(10):2415-2423.
    [14]张阿漫,汪玉,闻雪友,等.水下爆炸气泡动态特性研究综述[J].船舶力学,2009,13(5):828-840.
    [15]李恒乐.煤岩电脉冲应力波致裂增渗行为与机理[D].徐州:中国矿业大学,2015.
    [16]尹双增.探讨一种新的复合型断裂判据——塑性区最短距离r_(min)判据[J].应用数学和力学,1985,6(6):507-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700