用户名: 密码: 验证码:
毫米级高分辨率的混沌激光分布式光纤测温技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser
  • 作者:张倩 ; 王亚辉 ; 张明江 ; 张建忠 ; 乔丽君 ; 王涛 ; 赵乐
  • 英文作者:Zhang Qian;Wang Ya-Hui;Zhang Ming-Jiang;Zhang Jian-Zhong;Qiao Li-Jun;Wang Tao;Zhao Le;Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province;Institute of Optoelectronic Engineering,College of Physics and Optoelectronics,Taiyuan University of Technology;
  • 关键词:宽线宽混沌激光 ; 毫米级空间分辨率 ; 布里渊光相干域分析 ; 温度测量
  • 英文关键词:broadband chaotic laser;;millimeter-level spatial resolution;;Brillouin optical correlation domain analysis;;temperature measurement
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:太原理工大学物理与光电工程学院光电工程研究所;新型传感器与智能控制教育部重点实验室;
  • 出版日期:2019-05-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61527819,61875146);; 山西省回国留学人员科研资助(批准号:2016–036,2017–052)资助的课题~~
  • 语种:中文;
  • 页:WLXB201910015
  • 页数:9
  • CN:10
  • ISSN:11-1958/O4
  • 分类号:133-141
摘要
近年来,随着分布式光纤传感技术在各大基础设施健康监测领域的广泛应用,人们对能够实现毫米量级精准定位和监测技术的需求日益增长.本文提出了一种基于宽线宽混沌激光的高分辨率分布式光纤测温技术.实验通过改变光反馈混沌源的偏振匹配态和反馈强度等外部参数,产生了–3 dB线宽约为7.5 GHz的宽线宽混沌激光,并在300 m传感光纤实现了空间分辨率为7.05 mm的分布式温度测量.同时,为了抑制光源线宽增加造成的布里渊增益谱恶化,在泵浦路中引入了时间门控技术,其中经脉冲调制后的泵浦光峰值功率提高了约9.5 dB,同时脉冲调制使混沌互相关锁定于脉冲持续时间内,从而布里渊增益谱的信号背景噪声比由约2.28 dB提升为4.55 dB,最终实现了空间分辨率为3.12 mm的分布式温度测量.
        The high-precision structural health monitoring of large civil structures and materials are increasingly demanded with widely using the distributed fiber sensors. A Brillouin optical correlation domain analysis for millimeter-levelhigh spatial resolution sensing using broadband chaotic laser is proposed and demonstrated.Through the analysis of the influence of polarization state and feedback strength on the chaotic laser, we experimentally achieve a broadband chaotic laser with a spectrum over 7.5 GHz in –3 dB which means that the theoretical spatial resolution is 3 mm, and we also successfully measure the distribution of fiber Brillouin gain spectrum with a temperature over 300 m measurement range with 7.05 mm spatial resolution, which is the first time that the sensor system based on chaotic laser has achieved the measurement with millimeter-level.However, there is still a difference in spatial resolution between the experimental and theoretical values. We can find that the chaotic laser has a time-delay feature; besides, with the broadening of chaotic laser, the threshold of stimulated Brillouin scattering in optical fibers increases while the Brillouin gain will weaken if the pump power is not enough here, and the cross-correlation peak of chaotic laser will narrow. All these problems cause the Brillouin gain signal to be easily submerged by noise, so the performance of the chaotic Brillouin optical correlation domain analysis system will decrease ultimately. Therefore, we also propose an optimization of Brillouin optical correlation domain analysis system by introducing the time-gated scheme into pump branch. It is obvious that the peak power of the pump wave is heightened by more than 9.5 dB after being amplitudemodulated by a square pulse with a pulse width of greater than acoustic phonon lifetime, and the signal-to-back ground noise ratio of the gain spectrum is improved effectively in theory; the cross correlation between chaotic pump wave and probe waveis locked within a pulse duration time, and the residual stimulated Brillouin scattering interactions existing outside the central correlation peak can be largely inhibited. In this optimized setup, the performance of the distributed temperature sensing is improved to 3.12 mm spatial resolution, which corresponds well to the theoretical value. The improved chaotic Brillouin optical correlation domain analysis technology will have a great potential application in high-precision structural health monitoring of large civil structures.
引文
[1]António B, Joan C, Sergi V 2016 Sensors 16 748
    [2]Bao X Y, Chen L 2011 Sensors 11 4152
    [3]Thévenaz L 2010 Front. Optoelectron. China 3 13
    [4]Kurashima T, Horiguchi T, Tateda M 1990 Opt. Lett. 15 1038
    [5]Hu J H, Zhang X P, Yao Y G, Zhao X D 2013 Opt. Express21 145
    [6]Kim Y H, Song K Y 2017 Opt. Express 25 14098
    [7]Soto M A, Bolognini G, Pasquale F D 2011 Opt. Lett. 36 232
    [8]Li W H, Bao X Y, Li Y, Chen L 2008 Opt. Express 16 21616
    [9]Brown A W 2007 J. Lightw. Technol. 25 381
    [10]HotateK,Arai H, SongKY 2008Sice J. Control Measur.Syst. Integrat. 1 271
    [11]Hotate K, Hasegawa T 2000 IEICE Trans. Electron. 83 405
    [12]Ryu G, Kim G T, Song K Y, Lee S B, Lee K 2017 J. Lightw.Technol. 35 5311
    [13]ZadokA,AntmanY,PrimerovN,DenisovA,SanchoJ,Thévenaz L 2012 Laser Photon. Rev. 6 L1
    [14]Cohen R,London Y,Antman Y,Zadok A 2014 Opt.Express22 12070
    [15]Ji Y N,Zhang M J,Wang Y C,Wang P,Wang A B,Wu Y,Xu H,Zhang Y N 2014 Int.J.Bifurcat.Chaos 24 1450032
    [16]Zhang J Z,Zhang M T,Zhang M J,Liu Y,Feng C K,Wang Y H,Wang Y C 2018 Opt.Lett.43 1722
    [17]Zhang J Z,Feng C K,Zhang M J,Liu Y,Wu C Y,Wang YH 2018 Opt.Express 26 6962
    [18]Zhang J Z,Wang Y H,Zhang M J,Zhang Q,Li M W,Wu CY,Qiao L J,Wang Y C 2018 Opt.Express 26 17597
    [19]Jeong J H,Lee K,Song K Y,Jeong J M,Lee S B 2012 Opt.Express 20 27094
    [20]Wang A B 2014 Ph.D.Dissertation(Taiyuan:Taiyuan University of Technology)(in Chinese)[王安帮2014博士学位论文(太原:太原理工大学)]
    [21]Zhang J Z,Wang A B,Wang J F,Wang Y C 2009 Opt.Express 17 6357
    [22]Zhang M J,Liu H,Zhang J Z,Liu Y,Liu R X 2017 IEEEPhoton.J.9 1943
    [23]Parker T,Farhadiroushan M,Handerek V A 1997Proceedings of IEE Colloquium on Optical Techniques for Smart Structures and Structural Monitoring London,UK,February 17,1997 p1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700