用户名: 密码: 验证码:
六株人源益生菌的表面性质与黏附性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Surface Properties and Adhesion Ability of Six Human Origin Probiotics
  • 作者:熊世进 ; 高文功 ; 杨菲菲 ; 赵雪婷 ; 秦小彤 ; 杜同浩 ; 熊涛
  • 英文作者:XIONG Shi-jin;GAO Wen-gong;YANG Fei-fei;ZHAO Xue-ting;QIN Xiao-tong;DU Tong-hao;XIONG Tao;State Key Laboratory of Food Science and Technology,Nanchang University;School of Food Science & Technology,Nanchang University;Xiu Yi Sheng International Research Institute of Probiotics;
  • 关键词:益生菌 ; 黏附能力 ; 自凝集 ; 疏水性
  • 英文关键词:probiotics;;adhesion ability;;auto-aggregation;;hydrophobicity
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:南昌大学食品科学与技术国家重点实验室;南昌大学食品学院;修益升益生菌国际研究院;
  • 出版日期:2018-12-13 11:49
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.425
  • 基金:国家重点研发计划(20165ABC28004);; 江西省重大研发专项项目(20165ABC28004);; 江西省蔬菜产业技术体系岗位专家项目(JXARS-06)
  • 语种:中文;
  • 页:SPKJ201909023
  • 页数:7
  • CN:09
  • ISSN:11-1759/TS
  • 分类号:132-138
摘要
通过测定六株人源益生菌的自凝集及疏水性能力,并以人结肠腺癌细胞系Caco-2和HT-29作为体外细胞黏附模型评价其黏附能力,最后探究生长阶段、菌体浓度和孵育时间对发酵乳杆菌CECT5716黏附能力的影响。结果表明嗜酸乳杆菌F-1的自凝集率最高,为69.92%;疏水性最强的是鼠李糖乳杆菌MP-108,达到90.10%;乳双歧杆菌AD011对Caco-2和HT-29的黏附性均为最强,分别为(42.80±0.68)、(47.01±0.20) CFU/cell;不同益生菌的自凝集能力、疏水性及黏附能力均存在菌株特异性,其自凝集能力、疏水性及黏附能力间无明显相关性。此外,发酵乳杆菌CECT5716黏附能力随菌体浓度增大而显著(p<0.05)增加,当菌体浓度达10~8 CFU/mL以上时黏附能力不再显著提高;随着共孵育的时间延长,其黏附能力也增强,在共孵育2 h后不再提升;且菌体生长稳定期时表现出的黏附能力最强,达到(3.61±0.20) CFU/cell。所考察的益生菌大部分都具有较强的潜在黏附能力,其中以乳双歧杆菌AD011最强。这些益生菌具有可在人体肠道定殖生长的潜在益生功能,在食品和药品等行业中具有良好的应用前景。
        The auto-aggregation and hydrophobicity of six human origin probiotics were determined,and their adhesion ability in vitro cell adhesion models was evaluated using the human colon cancer cell lines Caco-2 and HT-29. Finally,the effects of growth stage,cell concentration and incubation time on the adhesion of Lactobacillus fermentum CECT5716 were investigated. The results showed that the auto-aggregation rate of Lactobacillus acidophilus F-1 was the highest (69.92%). And the most hydrophobic was Lactobacillus rhamnosus MP-108 (90.10%). Bifidobacterium lactis AD011 had the strongest adhesion to Caco-2 and HT-29,(42.80±0.68),(47.01±0.20) CFU/cell,respectively. There were strain specificity in the auto-aggregation ability,hydrophobicity and adhesion ability among different probiotics,but there was no significant correlation among the auto-aggregation ability,hydrophobicity and adhesion ability. In addition,the adhesion ability of L. fermentum CECT5716 improved significantly (p<0.05) with the increase of the concentration of the bacteria,but the adhesion ability no longer increased obviously when the concentration of the bacteria reached 10~8 CFU/mL or higher than it. As the time of co-incubation prolonged,the adhesion ability was also enhanced,but it had no longer increased after 2 h of co-incubation;and the cell exhibited the strongest adhesion ability in the stationary phase,reaching (3.61±0.20) CFU/cell. Most of the probiotics examined had strong potential adhesion,of which B. lactis AD011 was the strongest. These probiotics have potential probiotic properties of colonization and growth in human intestinal tract,and have good application prospects in food and pharmaceutical industries.
引文
[1]田丰伟,孟和,孙志宏,等.优良益生菌高效筛选与应用关键技术2014年度报告[J].科技资讯,2016,14(7):175-175.
    [2]Weichselbaum E.Probiotics and health:A review of the evidence[J].Nutrition Bulletin,2009,34(4):340-373.
    [3]Khan S U.Probiotics in dairy foods:A review[J].Nutrition & Food Science,2014,44(1):71-88.
    [4]丁素娟,王薇薇,李爱科,等.益生菌肠道黏附性研究进展[J].饲料工业,2016,37(23):55-61.
    [5]任大勇.益生乳酸杆菌的黏附及免疫调节作用研究[D].长春:吉林大学,2013.
    [6]Jr W M D.Bacterial adhesion:Seen any good biofilms lately?[J].Clinical Microbiology Reviews,2002,15(2):155-166.
    [7]Abushelaibi A,Almahdin S,El Tarabily K,et al.Characterization of potential probiotic lactic acid bacteria isolated from camel milk[J].LWT-Food Science and Technology,2017,79:316-325.
    [8]Aarti C,Khusro A,Varghese R,et al.In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from Hentak,a fermented fish product of north-east India[J].LWT-Food Science and Technology,2017,86:438-446.
    [9]Han Q,Kong B,Chen Q,et al.In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics[J].Journal of Functional Foods,2017,32:391-400.
    [10]Rosenberg M,Judes H,Weiss E.Cell surface hydrophobicity of dental plaque microorganisms in situ[J].Infection & Immunity,1983,42(2):831-834.
    [11]Vidhyasagar V,Jeevaratnam K.Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro[J].Journal of Functional Foods,2013,5(1):235-243.
    [12]Hernández-Alcántara A M,Wacher C,Llamas M G,et al.Probiotic properties and stress response of lactic acid bacteria isolated from cooked meat products[J].LWT,2018,91:249-257.
    [13]魏银萍,王瑞君.益生菌粘附特性研究方法进展[J].右江民族医学院学报,2006,28(1):125-126.
    [14]熊涛,刘妍妍,黄涛,等.副干酪乳杆菌NCU622耐酸耐胆盐及其黏附性能[J].食品科学,2015,36(5):93-98.
    [15]熊涛,黄巧芬,李萍,等.植物乳杆菌NCU116的模拟人体肠道上皮细胞黏附性能[J].食品科学,2013,34(15):252-255.
    [16]熊涛,王韵,曾哲灵,等.一种改良的乳酸菌活菌数快速测定方法[J].食品与发酵工业,2009(10):132-134.
    [17]Rajoka M S R,Mehwish H M,Siddiq M,et al.Identification,characterization,and probiotic potential of Lactobacillus rhamnosus isolated from human milk[J].LWT-Food Science and Technology,2017,84:271-280.
    [18]Lazado C C,Caipang C M,Brinchmann M F,et al.In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria[J].Veterinary Microbiology,2011,148(2-4):252-259.
    [19]Bautista-Gallego J,Arroyo-López F N,Rantsiou K,et al.Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential[J].Food Research International,2013,50(1):135-142.
    [20]Chen S,Chen L,Chen L,et al.Potential probiotic characterization of Lactobacillus reuteri from traditional Chinese highland barley wine and application for room-temperature-storage drinkable yogurt[J].Journal of Dairy Science,2018,101(7):5780-5788.
    [21]Saini K,Tomar S K.In vitro evaluation of probiotic potential of Lactobacillus cultures of human origin capable of selenium bioaccumulation[J].LWT-Food Science and Technology,2017,84:497-504.
    [22]Caggia C,De A M,Pitino I,et al.Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses[J].Food Microbiology,2015,50:109-117.
    [23]Basson A,Flemming L A,Chenia H Y.Evaluation of adherence,hydrophobicity,aggregation,and biofilm development of Flavobacterium johnsoniae-like isolates[J].Microbial Ecology,2008,55(1):1-14.
    [24]Oh A,E B-M Daliri,and D H Oh.Screening for potential probiotic bacteria from Korean fermented soybean paste:In vitro and Caenorhabditis elegans model testing[J].LWT,2018,88:132-138.
    [25]Saad N,Delattre C,Urdaci M,et al.An overview of the last advances in probiotic and prebiotic field[J].LWT-Food Science and Technology,2013,50(1):1-16.
    [26]陈臣.植物乳杆菌ST-Ⅲ对肠上皮细胞的粘附性质及机理的研究[D].无锡:江南大学,2008.
    [27]魏银萍,王斌,魏泓.益生菌株对HT-29细胞的粘附及对致病菌的粘附抑制性能研究[J].中国药业,2006,15(8):7-8.
    [28]Botta C,Langerholc T,Cenci,et al.In vitro selection and characterization of new probiotic candidates from table olive microbiota[J].Plos One,2014,9(4):e94457.
    [29]Ribeiro S C,Stanton C,Yang B,et al.Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese[J].LWT,2018,90:403-411.
    [30]Ramos C L,Thorsen L,Schwan R F,et al.Strain-specific probiotics properties of Lactobacillus fermentum,Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products.[J].Food Microbiology,2013,36(1):22-29.
    [31]Zago M,Fornasari M E,Carminati D,et al.Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses[J].Food Microbiology,2011,28(5):1033-1040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700