用户名: 密码: 验证码:
CO_2加富对盐胁迫下黄瓜幼苗叶片光合特性及活性氧代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of CO_2 enrichment on photosynthetic characteristics and reactive oxygen species metabolism in leaves of cucumber seedlings under salt stress
  • 作者:厉书豪 ; 李曼 ; 张文东 ; 李仪曼 ; 艾希珍 ; 刘彬彬 ; 李清明
  • 英文作者:LI Shuhao;LI Man;ZHANG Wendong;LI Yiman;AI Xizhen;LIU Binbin;LI Qingming;College of Horticulture Science and Engineering, Shandong Agricultural University;State Key Laboratory of Crop Biology;Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture;
  • 关键词:黄瓜 ; 盐胁迫 ; CO_2加富 ; 光合特性 ; 活性氧代谢
  • 英文关键词:cucumber;;salt stress;;CO_2 enrichment;;photosynthetic characteristics;;reactive oxygen species metabolism
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:山东农业大学园艺科学与工程学院;作物生物学国家重点实验室;农业部黄淮海设施农业工程科学观测实验站;
  • 出版日期:2018-12-21 16:37
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31471918);; “十二五”国家科技支撑计划项目(2014BAD05B03);; 山东省重点研发计划项目(2017CXGC0201);; 山东省农业重大应用技术创新项目(鲁财农指[2016]36号)
  • 语种:中文;
  • 页:STXB201906026
  • 页数:9
  • CN:06
  • ISSN:11-2031/Q
  • 分类号:249-257
摘要
以‘津优35号’黄瓜(Cucumis sativus L.)水培苗为试材,采用裂区设计,主区因素为CO_2浓度处理,设大气CO_2浓度(Symbol{B@400μmol/mol)和CO_2加富[(800±40)μmol/mol]2个CO_2浓度水平,裂区因素为盐胁迫处理,用NaCl模拟盐胁迫,设对照(0 mmol/L NaCl)、盐胁迫(80 mmol/L NaCl)2个盐分水平,研究了CO_2加富对盐胁迫下黄瓜幼苗生长、光合特性及活性氧代谢的影响。结果表明:盐胁迫显著抑制黄瓜幼苗的生长,并降低了叶绿素含量、ETR、Φ_(PSII)、核酮糖-1,5-二磷酸羧化酶(RuBPCase)活性及净光合速率;盐胁迫增加了丙二醛及活性氧的累积,与此同时也提高了脯氨酸含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性,但降低了过氧化物酶(POD)活性。CO_2加富显著提高了盐胁迫下黄瓜幼苗的株高、茎粗、叶面积及地上部鲜重,降低了叶绿素a、叶绿素b、类胡萝卜素及叶绿素(a+b)含量,但显著提高了净光合速率和RuBPCase活性,同时降低了气孔导度及蒸腾速率,并且使其具有较高的表观电子传递速率及PSII实际光化学效率;CO_2加富显著提高了盐胁迫下黄瓜幼苗叶片脯氨酸含量及SOD、POD、CAT活性,丙二醛、过氧化氢含量和超氧阴离子产生速率显著降低。综上所述,CO_2加富可通过提高幼苗叶片净光合速率、脯氨酸含量及抗氧化酶活性,降低蒸腾速率、减少丙二醛含量及活性氧的积累,从而缓解盐胁迫对黄瓜植株造成的伤害。
        We investigated the effects of CO_2 enrichment on photosynthetic characteristics and metabolism of reactive oxygen species in the leaves of cucumber(Cucumis sativus L. ‘Jinyou No.35') seedlings under salt stress. In the split-plot design used, the main treatment consisted of two CO_2 concentration levels [ambient [CO_2] ≈ 400 μmol/mol and enriched [CO_2]=(800 ± 40) μmol/mol] and the subplot had two levels of salinity treatment(0 and 80 mmol/L NaCl). The results showed that after 7 days of experimental treatment, salt stress caused a significant reduction in growth rate(i.e., increase in plant height, stem thickness, leaf area, and the growth of both shoot and root), ribulose-1,5-bisphosphate carboxylase(RuBPCase) activity, net photosynthetic rate(P_n) of the leaves, stomatal conductance(G_s), and transpiration rate(T_r) of cucumber seedlings. Salt stress decreased the chlorophyll [chlorophyll a, chlorophyll b, carotenoids, and chlorophyll(a+b)] content, electron transport rate(ETR), quantum of PSII(Φ_(PSII)), and photochemical quenching(qP) but markedly increased non-photochemical quenching(NPQ); there were no significant differences in chlorophyll a/b and maximum quantum yield of PSII(F_v/F_m) between control and salt stress treatments. Moreover, the portion of excessive energy in the photosystem II(PSII) reaction center was enhanced by salt stress that increased the rate of production of the superoxide anion radical(O■) and hydrogen peroxide(H_2O_2) content in the leaves of cucumber seedlings. Subsequently, this resulted in an increase in malondialdehyde(MDA) content, permeability of cell membranes, and osmoticum(proline) content. Changes in antioxidative enzyme activities of cucumber seedling leaves differed between the salt stress and elevated [CO_2] treatments. Superoxide dismutase(SOD) and catalase(CAT) activities increased while peroxidase(POD) activity decreased in cucumber seedling leaves treated with salt stress. However, the activity of antioxidative enzymes(such as SOD, POD, and CAT) and proline content were enhanced by elevated [CO_2]. Therefore, we can speculate that reactive oxygen species(ROS) quenching was limited under salt stress, leading to their accumulation and serious lipid peroxidation. However, elevated [CO_2] reduced the content of MDA, H_2O_2, and the rate of O■ production in cucumber seedling leaves under salt stress. ROS was eliminated by antioxidative enzymes under elevated [CO_2], therefore, lipid peroxidation damage was less than that caused by salt stress. Elevated [CO_2] increased the plant height, stem thickness, leaf area, and shoot fresh weight of cucumber seedlings significantly under salt stress. Additionally, elevated [CO_2] decreased the content of chlorophyll [chlorophyll a, chlorophyll b, carotenoid, and chlorophyll(a+b)], stomatal conductance, and transpiration rate but markedly increased P_n, ETR, Φ_(PSII), and RuBPCase activity in leaves of cucumber seedlings under salt stress. In conclusion, elevated [CO_2] alleviated the negative effects of salt stress and enhanced the resistance of cucumber plant growth to salt stress through enhanced P_n, cellular membrane stability, proline content, and antioxidative enzyme activities while transpiration rate, MDA content, and accumulation of ROS were reduced.
引文
[1] 李彬,王志春,孙志高,陈渊,杨福.中国盐碱地资源与可持续利用研究.干旱地区农业研究,2005,23(2):154- 158.
    [2] 张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50- 56.
    [3] Allakhverdiev S I,Sakamoto A,Nishiyama Y,Inaba M,Murata N.Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.Plant Physiology,2000,123(3):1047- 1056.
    [4] 袁会敏,周健民,段增强,王火焰.CO2浓度升高与增施钾肥对黄瓜生长的影响.土壤,2009,41(6):869- 874.
    [5] 杨连新,王云霞,朱建国,Hasegawa T,王余龙.开放式空气中CO2浓度增高(FACE)对水稻生长和发育的影响.生态学报,2010,30(6):1573- 1585.
    [6] Bowes G.Growth at elevated CO2:photosynthetic responses mediated through Rubisco.Plant,Cell & Environment,1991,14(8):795- 806.
    [7] 严蓓,孙锦,束胜,郭世荣.外源钙对NaCl胁迫下黄瓜幼苗叶片光合特性及碳水化合物代谢的影响.南京农业大学学报,2014,37(1):31- 36.
    [8] 杨建军,张国斌,郁继华,胡琳莉,罗石磊,牛童,张婧.盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响.中国农业科学,2017,50(19):3778- 3788.
    [9] Zaghdoud C,Carvajal M,Ferchichi A,del Carmen Martínez-Ballesta M.Water balance and N-metabolism in broccoli (Brassica oleracea L.var.Italica) plants depending on nitrogen source under salt stress and elevated CO2.Science of the Total Environment,2016,571:763- 771.
    [10] Piňero M C,Houdusse F,Garcia-Mina J M,Garnica M,del Amor F M.Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration.Physiologia Plantarum,2014,151(4):375- 389.
    [11] Pérez-López U,Robredo A,Lacuesta M,Mena-Petite A,Muňoz-Rueda A.The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2.Environmental and Experimental Botany,2009,66(3):463- 470.
    [12] Melgar J C,Syvertsen J P,García-Sánchez F.Can elevated CO2 improve salt tolerance in olive trees?Journal of Plant Physiology,2008,165(6):631- 640.
    [13] Pérez-López U,Robredo A,Lacuesta M,Sgherri C,Muňoz-Rueda A,Navari-Izzo F,Mena-Petite A.The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2.Physiologia Plantarum,2009,135(1):29- 42.
    [14] 张琴,朱祝军.盐胁迫下CO2加富对黄瓜幼苗生理特性的影响.耕作与栽培,2015,(3):31- 32,34- 34.
    [15] 龚建华,向军.黄瓜群体叶面积无破坏性速测方法研究.中国蔬菜,2001,(4):7- 9.
    [16] Arnon D I.Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris.Plant Physiology,1949,24(1):1- 15.
    [17] 李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    [18] 汤章城.现代植物生理学实验指南.北京:科学出版社,1999.
    [19] 赵世杰,苍晶.植物生理学实验指导.北京:中国农业出版社,2016.
    [20] Chance B,Maehly A C.Assay of catalase and peroxidase.Methods in Enzymology,1955,2:764- 775.
    [21] 周珩,郭世荣,邵慧娟,陈新斌,魏斌,胡荣,姜冬晨,郑智航,孙锦.等渗NaCl和Ca(NO3)2胁迫对黄瓜幼苗生长和生理特性的影响.生态学报,2014,34(7):1880- 1890.
    [22] 张琴,朱祝军.CO2加富对盐胁迫下黄瓜生长及光合特性的影响.浙江农业科学,2009,(1):45- 47.
    [23] Zaghdoud C,Mota-Cadenas C,Carvajal M,Muries B,Ferchichi A,del Carmen Martínez-Ballesta M.Elevated CO2 alleviates negative effects of salinity on broccoli (Brassica oleracea L.var Italica) plants by modulating water balance through aquaporins abundance.Environmental and Experimental Botany,2013,95:15- 24.
    [24] 杨凤军,李天来,臧忠婧,吴瑕.等渗NaCl、干旱胁迫对番茄幼苗光合特性及叶绿体超微结构的影响.应用生态学报,2017,28(8):2588- 2596.
    [25] 蒋明义,杨文英,徐江,陈巧云.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用.植物学报,1994,36(4):289- 295.
    [26] 张其德,温晓刚,卢从明,冯丽洁,匡廷云,张建华.盐胁迫下CO2加倍对春小麦一些光合功能的影响.植物生态学报,2000,24(3):308- 311.
    [27] 张放,陈丹,张士良,吴荣兰.高浓度CO2对不同水分条件下枇杷生理的影响.园艺学报,2003,30(6):647- 652.
    [28] Pérez-López U,Miranda-Apodaca J,Lacuesta M,Mena-Petite A,Muňoz-Rueda A.Growth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinity.Scientia Horticulturae,2015,195:56- 66.
    [29] 宝俐,董金龙,李汛,段增强.CO2浓度升高和氮素供应对黄瓜叶片光合色素的影响.土壤,2016,48(4):653- 660.
    [30] 袁嫚嫚,朱建国,刘钢,王伟露.粳稻生育后期剑叶光合日变化和光合色素对大气CO2浓度和温度升高的响应——FACE研究.应用生态学报,2018,29(1):167- 175.
    [31] 简令成,王红.逆境植物细胞生物学.北京:科学出版社,2009.
    [32] 许大全.叶绿素含量的测定及其应用中的几个问题.植物生理学通讯,2009,45(9):896- 898.
    [33] Chen Y,Xu D Q.Two patterns of leaf photosynthetic response to irradiance transition from saturating to limiting one in some plant species.New Phytologist,2006,169(4):789- 798.
    [34] Low P S,Merida J R.The oxidative burst in plant defense:function and signal transduction.Physiologia Plantarum,1996,96(3):533- 542.
    [35] Maggio A,Reddy M P,Joly R J.Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity.Environmental and Experimental Botany,2000,44(1):31- 38.
    [36] 任红旭,陈雄,吴冬秀.CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响.作物学报,2001,27(6):729- 736.
    [37] Park E J,Jekni.Genetic engineering of glycinebetaine synthesis in tomato protects seeds,plants,and flowers from chilling damage.The Plant Journal,2004,40(4):474- 487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700