用户名: 密码: 验证码:
垂直方向磷素竞争对杉木根系生长及生物量分配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of vertical phosphorus competition on root growth and biomass distribution of Chinese fir seedlings
  • 作者:许静静 ; 李琦 ; 吴文景 ; Rashid ; Muhammad ; Haroon ; U ; 马祥庆 ; 吴鹏
  • 英文作者:XU Jingjing;LI Qi;WU Wenjing;RASHID Muhammad Haroon U;MA Xiangqing;WU Pengfei;College of Forestry, Fujian Agriculture and Forestry University;State Forestry Administration Engineering Research Center of Chinese fir;Soil and water conservation monitoring center of Zhumadian;
  • 关键词:杉木 ; 竞争策略 ; 低磷胁迫 ; 根系形态 ; 生物量
  • 英文关键词:Cunninghamia lanceolata;;competitive strategy;;phosphorus deficiency stress;;root morphology;;biomass
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建农林大学林学院;国家林业局杉木工程技术研究中心;驻马店水土保持监测中心;
  • 出版日期:2018-12-21 16:37
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(U1405211,31370531);; 福州市科技计划项目(2017-N-35);; 福建农林大学科技创新专项基金项目(CXZX2016059)
  • 语种:中文;
  • 页:STXB201906021
  • 页数:11
  • CN:06
  • ISSN:11-2031/Q
  • 分类号:198-208
摘要
针对自然环境中有效磷养分主要分布于土壤表层而容易导致植物根系激烈竞争的问题,选择同一杉木(Cunninghamia lanceolata)无性系幼苗为研究对象,采用水平方向空间狭小而垂直方向空间大的室内盆栽模拟装置,以单株种植为对照,构建双株种植的竞争处理,通过设置3个供磷水平:不供磷处理(0 mg/kg KH_2PO_4)、低磷处理(6 mg/kg KH_2PO_4)和正常供磷处理(12 mg/kg KH_2PO_4),采用破坏性试验方式收获,分别在试验的前期(50 d)、中期(100 d)和后期(150 d)测定不同处理条件下杉木幼苗根系生物量与根系形态的变化,研究邻株杉木根系在垂直方向上对有限磷素资源的竞争策略。结果表明:竞争处理和供磷水平对杉木幼苗根系长度、平均直径等形态指标的影响存在交互作用(P<0.05),对杉木幼苗生物量分配、比根长等指标的影响均不存在明显的交互作用(P>0.05)。竞争处理中杉木根系形态增量均明显高于非竞争处理的单株幼苗,且随着胁迫时间的增加,根系形态增量均呈现显著的上升趋势,其中在胁迫中期和后期的增量明显高于前期,且邻株竞争处理明显提高了杉木的比根长,提升了根系觅磷的能力;随着供磷水平的提高,根表面积和根体积增量大体上呈现先上升后下降的趋势。与非竞争处理相比,竞争条件下杉木地上部生物积累量差异不明显,而根系生物量、根冠比均低于非竞争处理的单株幼苗。
        This study was conducted to solve the problem of available phosphorus, which is mainly distributed on the soil surface and easily leads to the severe P competition of plant roots in natural environments. The morphological competition strategy of limited P resources in the vertical direction of adjacent Chinese fir roots was studied by measuring the changes in the root biomass and morphology of Chinese fir seedlings under different treatment conditions. The experiment was performed in a greenhouse at Fujian Agriculture and Forestry University using a Chinese fir clone "YANG-020". Specially designed glass pots 10 cm long, 10 cm wide, and 40 cm high were prepared for the P stress and competition simulation. Two seedlings were planted in each pot, except for the control which contained a single seedling in the center of all the pot. All the treatments were performed using three P treatment levels, i.e., no, low, and normal P treatment(0, 6, and 12 mg/kg KH_2PO_4, respectively). The seedlings of each treatment were harvested separately at the prime, interim, and last stages(September 9, October 30, and December 19, 2013, respectively) to determine the shoot biomass, root∶shoot ratio, and root biomass, after determining the root length, surface area, mean diameter, and volume increment over the entire experimental period. According to the results, obvious effects of the interactions between the competitive and P treatments were observed on the root morphology(P<0.05), root length, and the average diameter of root morphology of Chinese fir seedlings. However, no apparent effects of the interactions between the competitive treatment and P supply on the biomass allocation were observed(P>0.05) in the specific root length of Chinese fir seedlings. Competition in processing Chinese fir root morphology and growth was significantly higher than that of non-competition processing in single plant seedlings, and with increasing stress time, the growth and root morphology tended to increase significantly. In the early stage of stress, the growth at the period at the middle and cessation was obviously higher than that at the onset. Moreover, the competitive treatment of adjacent plants significantly improved the specific root length of the Chinese fir and improved their ability to actively seek P in the root system. The root surface area and volume increment generally increased and then tended to decrease with increasing P level in the soil. Compared with non-competition treatment, the biomass accumulation of Chinese fir was not obvious, whereas the root biomass and root: shoot ratio were lower than that of non-competitive single seedlings were.
引文
[1] 李永夫,金松恒,叶正钱,黄坚钦,姜培坤.低磷胁迫对山核桃幼苗根系形态和生理特征的影响.浙江林学院学报,2010,27(2):239-245.
    [2] 李杰,陈智文,石元亮,张清,李筱琳.磷素活化剂对红壤磷形态及有效性影响的研究.水土保持学报,2011,25(3):83-86.
    [3] Mommer L,Van Ruijven J,Jansen C,Van De Steeg H M,De Kroon H.Interactive effects of nutrient heterogeneity and competition:implications for root foraging theory?Functional Ecology,2011,26(1):66-73.
    [4] Casper B B,Jackson R B.Plant competition underground.Annual Review of Ecology and Systematics,1997,28(1):545-570.
    [5] 王鹏,牟溥,李云斌.植物根系养分捕获塑性与根竞争.植物生态学报,2012,36(11):1184-1196.
    [6] López-Arredondo D L,Leyva-González M A,González-Morales S I,López-Bucio J,Herrera-Estrella L.Phosphate nutrition:improving low phosphate tolerance in crops.Annual Review of Plant Biology,2014,65(1):95-123.
    [7] Zhang Y,Zhou Z C,Yang Q.Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions.Plant and Soil,2013,364(1/2):93-104.
    [8] De Kroon H.How do roots interact?Science,2007,318(5856):1562-1563.
    [9] 罗维成,曾凡江,刘波,张利刚,宋聪,彭守兰,Arndt S K.疏叶骆驼刺根系对土壤异质性和种间竞争的响应.植物生态学报,2012,36(10):1015-1023.
    [10] 郝鹏,李景文,丛日春,张楠,井家林,黄晶晶.苦豆子根系对土壤异质性和竞争者的响应.北京林业大学学报,2012,34(5):94-99.
    [11] 陈伟,薛立.根系间的相互作用——竞争与互利.生态学报,2004,24(6):1243-1251.
    [12] Fang S Q,Gao X,Deng Y,Chen X P,Liao H.Crop root behavior coordinates phosphorus status and neighbors:from field studies to three-dimensional in situ reconstruction of root system architecture.Plant Physiology,2011,155(3):1277-1285.
    [13] Fang S Q,Clark R T,Zheng Y,Iyer-Pascuzzi A S,Weitz J S,Kochian L V,Edelsbrunner H,Liao H,Benfey P N.Genotypic recognition and spatial responses by rice roots.Proceedings of the National Academy of Sciences of the United States of America,2013,110(7):2670-2675.
    [14] 许华森,云雷,毕华兴,高路博,鲍彪.核桃-大豆间作系统细根分布及地下竞争.生态学杂志,2012,31(7):1612-1616.
    [15] 吴鹏飞,马祥庆,陈友力,林文奖,黄诗云,刘露奇.杉木无性系测定林磷素利用效率的比较.福建农林大学学报:自然科学版,2012,41(1):40-45.
    [16] 马祥庆,梁霞.植物高效利用磷机制的研究进展.应用生态学报,2004,15(4):712-716.
    [17] 马祥庆,范少辉,刘爱琴,陈绍栓,林上杰.不同栽植代数杉木人工林土壤肥力的比较研究.林业科学研究,2000,13(6):577-582.
    [18] 范少辉,马祥庆,陈绍栓,林上杰.多代杉木人工林生长发育效应的研究.林业科学,2000,36(4):9-15.
    [19] 马祥庆,范少辉,陈绍栓,林上杰.杉木人工林连作生物生产力的研究.林业科学,2003,39(2):78-83.
    [20] Wu P F,Wang G Y,Farooq T H,Li Q,Zou X H,Ma X Q.Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content:does neighboring root activity aggravate P nutrient deficiency?Journal of Soils and Sediments,2017,17(12):2775-2785.
    [21] 邹显花,吴鹏飞,贾亚运,马静,马祥庆.杉木根系对不同磷斑块浓度与异质分布的阶段性响应.植物营养与肥料学报,2016,22(4):1056-1063.
    [22] 韦如萍,胡德活,晏姝,郑会全,王润辉.不同供磷浓度对杉木苗根系和盆栽土壤的影响.华南农业大学学报,2016,37(6):77-83.
    [23] 李琦,吴鹏飞,陈智裕,邹显花.邻株低磷竞争处理对杉木幼苗生长的影响.信阳师范学院学报:自然科学版,2014,27(3):351-354.
    [24] 李林源,连华萍,许鲁平.杉木种子园良种与优良无性系造林试验.林业科技开发,2015,29(1):30-32.
    [25] Downie H,Holden N,Otten W,Spiers A J,Valentine T A,Dupuy L X.Transparent soil for imaging the rhizosphere.PLoS One,2012,7(9):e44276.
    [26] Wu P F,Ma X Q,Tigabu M,Wang C,Liu A Q,Odén P C.Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress.Canadian Journal of Forest Research,2011,41(2):228-234.
    [27] 中华人民共和国农业部.NY/T2017—2011 植物中氮、磷、钾的测定.北京:中华人民共和国农业部,2011.
    [28] Pregitzer K S,DeForest J L,Burton A J,Allen M F,Ruess R W,Hendrick R L.Fine root architecture of nine North American trees.Ecological Monographs,2002,72(2):293-309.
    [29] 汪金松,范秀华,范娟,张春雨,夏富才.地上竞争对林下红松生物量分配的影响.生态学报,2012,32(8):2447-2457.
    [30] Karban R.Plant behaviour and communication.Ecology Letters,2008,11(7):727-739.
    [31] Hodge A.The plastic plant:root responses to heterogeneous supplies of nutrients.New Phytologist,2004,162(1):9-24.
    [32] Novoplansky A,Goldberg D E.Effects of water pulsing on individual performance and competitive hierarchies in plants.Journal of Vegetation Science,2001,12(2):199-208.
    [33] 马雪红,周志春,金国庆,张一.竞争对马尾松和木荷觅取异质分布养分行为的影响.植物生态学报,2009,33(1):81-88.
    [34] Casper B B,Cahill J F,Hyatt L A.Above-ground competition does not alter biomass allocated to roots in Abutilon theophrasti.New Phytologist,1998,140(2):231-238.
    [35] 范高华,崔桢,张金伟,黄迎新,神祥金,赵学勇.密度对尖头叶藜生物量分配格局及异速生长的影响.生态学报,2017,37(15):5080-5090.
    [36] 黎磊,周道玮,盛连喜.密度制约决定的植物生物量分配格局.生态学杂志,2011,30(8):1579-1589.
    [37] Watt M S,Whitehead D,Mason E G,Richardson B,Kimberley M O.The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata,at a dryland site.Forest Ecology and Management,2003,183(1/3):363-376.
    [38] 汪金松,范秀华,范娟,张春雨,夏富才.林木竞争对臭冷杉生物量分配的影响.林业科学,2012,48(4):14-20.
    [39] 曹翠玲,毛圆辉,曹朋涛,刘建朝,杨向娜.低磷胁迫对豇豆幼苗叶片光合特性及根系生理特性的影响.植物营养与肥料学报,2010,16(6):1373-1378.
    [40] 廉满红,田宵鸿,曹翠玲.低磷条件下熊猫豆光合特性及碳水化合物累积变化研究.干旱地区农业研究,2011,29(5):87-93,99-99.
    [41] 叶镜中,姜志林.苏南丘陵区杉木根系的生态特性.南京林业大学学报(自然科学版),1980,4(1):43-51.
    [42] 张东梅,宋鑫,张丽静,胡晓炜,陈晓龙,张燕慧.不同供磷水平对紫穗槐生长及根系形态的影响.草业科学,2014,31(9):1767-1773.
    [43] Mommer L,Visser E J W,Van Ruijven J,De Caluwe H,Pierik R,De Kroon H.Contrasting root behaviour in two grass species:a test of functionality in dynamic heterogeneous conditions.Plant and Soil,2011,344(1/2):347-360.
    [44] Lynch J P.Root phenes that reduce the metabolic costs of soil exploration:opportunities for 21st century agriculture.Plant,Cell and Environment,2015,38(9):1775-1784.
    [45] 梅莉,王政权,韩有志,谷加存,王向荣,程云环,张秀娟.水曲柳根系生物量、比根长和根长密度的分布格局.应用生态学报,2006,17(1):1-4.
    [46] 刘灵,廖红,王秀荣,严小龙.不同根构型大豆对低磷的适应性变化及其与磷效率的关系.中国农业科学,2008,41(4):1089-1099.
    [47] 陈苏英.不同家系杉木根系三维构型的差异及其对养分胁迫的响应研究[D].福州:福建农林大学,2014.
    [48] 廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异.植物学报,2000,42(2):158-163.
    [49] 朱同林,方素琴,李志垣,刘玉涛,廖红,严小龙.基于图像重建的根系三维构型定量分析及其在大豆磷吸收研究中的应用.科学通报,2006,51(16):1885-1893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700