用户名: 密码: 验证码:
基于高分辨率地形数据的冲洪积扇特征提取与演化模式讨论——以海原断裂带老虎山地区冲洪积扇为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EXTRACTING FEATURES OF ALLUVIAL FAN AND DISCUSSING LANDFORMS EVOLUTION BASED ON HIGH-RESOLUTION TOPOGRAPHY DATA: TAKING ALLUVIAL FAN OF LAOHUSHAN ALONG HAIYUAN FAULT ZONE AS AN INSTANCE
  • 作者:韩龙飞 ; 刘静 ; 袁兆德 ; 邵延秀 ; 王伟 ; 姚文倩 ; 王鹏 ; 梁欧博 ; 徐心悦
  • 英文作者:HAN Long-fei;LIU-ZENG Jing;YUAN Zhao-de;SHAO Yan-xiu;WANG Wei;YAO Wen-qian;WANG Peng;LIANG Ou-bo;XU Xin-yue;State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration;Lanzhou Institute of Seismology,China Earthquake Administration;Institute of Crustal Dynamics,China Earthquake Administration;
  • 关键词:冲洪积扇 ; 高精度地形数据 ; 起伏度 ; 粗糙度 ; 自动划分 ; 地貌演化
  • 英文关键词:alluvial-proluvial fan;;high-resolution terrain data;;relief;;roughness;;automatic division;;landform evolution
  • 中文刊名:DZDZ
  • 英文刊名:Seismology and Geology
  • 机构:中国地震局地质研究所地震动力学国家重点实验室;中国地震局兰州地震研究所;中国地震局地壳应力研究所;
  • 出版日期:2019-04-15
  • 出版单位:地震地质
  • 年:2019
  • 期:v.41
  • 基金:地震动力学国家重点实验室课题(LED2017A01);; 中国地震局地质研究所基本科研业务专项(IGCEA1814);中国地震局川滇国家地震监测预报实验场项目(2017CESE0102);; 国家自然科学基金(41761144065)共同资助
  • 语种:中文;
  • 页:DZDZ201902001
  • 页数:15
  • CN:02
  • ISSN:11-2192/P
  • 分类号:4-18
摘要
干旱—半干旱地区第四纪冲洪积扇蕴含着丰富的气候与构造信息,划分并描述不同时期的冲洪积扇单元及其地貌特征是开展第四纪冲洪积扇研究的重要步骤。野外考察等传统方法是对冲洪积扇进行描述与填图的最重要的途径之一,但在此之前对冲洪积扇进行大范围的自动化地貌初步分级则可为地貌填图提供指导,从而提高后续的野外工作效率。文中借助航空影像生成的0. 2m分辨率数字高程模型提取老虎山地区各冲洪积扇单元的起伏度与粗糙度,实现对各冲洪积扇单元的分类与差异探讨。研究表明,随着提取窗口尺寸的增大,粗糙度迅速增大,而当提取窗口增大到一定程度后粗糙度过渡为缓慢增大并达到稳定的状态。在尺寸为8m×8m的滑动取样窗口下,起伏度与粗糙度随着冲洪积扇年龄的增加,呈现先减小而后增大的趋势,这恰好反映了冲洪积扇的动态演化过程。
        Range-front alluvial fan deposition in arid and semiarid environments records vast amounts of climatic and tectonic information. Differentiating and characterizing alluvial fan morphology is an important part in Quaternary alluvial fan research. Traditional method such as field observations is a most important part of deciphering and mapping the alluvial fan. Large-scale automatically mapping of alluvial fan stratigraphy before traditional field observations could provide guidance for mapping alluvial fan morphology,thus improving subsequent field work efficiency. In this research,highresolution topographic data were used to quantify relief and roughness of alluvial fan within the Laohushan. These data suggest that mean surface roughness plotted against the size of the moving window is characterized by an initial increase in surface roughness with increased window size,but it shows no longer increase as a function of windows size. These data also suggest that alluvial fans in this study site smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces which suggests the evolution process of alluvial fan.Researchers usually differentiate alluvial morphology by mapping characteristics of fan surface in the field by describing surface clast size, rock varnish accumulation, and desert pavement development and analysis of aerial photographs or satellite imagery. Recently,the emergence of highresolution topographic data has renewed interest in the quantitative characterization of alluvial and colluvium landforms. Surface morphology that fan surface initially tends to become smoother with increasing age due to the formation of desert pavement and the degradation of bar-and-swale topography and subsequently,landforms become more dissected due to tectonics and climatic change induced increased erosion and channelization of the surface with time is widely used to distinguish alluvial fan types. Those characteristics would reflect various kinds of morphology metrics extracted from high-resolution topographic data. In the arid and semiarid regions of northwestern China,plenty of alluvial fans are preserved completely for lack of artificial reforming,and there exists sparse surface vegetation. In the meantime,range-front alluvial fan displaced by a number of active faults formed a series of dislocated landforms with different offsets which is a major reference mark in fault activity research. In this research,six map units(Qf6—Qf1),youngest to oldest,were observed in the study area by mapping performed by identifying geomorphic features in the field that are spatially discernible using hill-shade and digital orthophoto map. Alluvial fan relief and roughness were computed across multiple observation scales(2 m×2 m to 100 m×100 m) based on the topographic parameters of altitude difference and standard deviation of slope,curvature and aspect.In this research,mean relief keeps increasing with increased window size while mean surface roughness is characterized by a rapid increase over wavelengths of 6 ~ 15 m,representing the typical length scale of bar-and-swale topography. At longer wavelengths,surface roughness values increase by only minor amounts,suggesting the topographic saturation length is 6 ~ 15 m for those fan surfaces in which saturation length of standard deviation of curvature is less than 8 m. Box and whisker plot of surface roughness averaged over 8 m2 for each alluvial fan unit in the study area suggests that the pattern of surfaces smoothing out with age and then starting to become rougher again as age increases further beyond Qf4 or Qf3 unit. The younger alluvial fan is characterized by prominent bar-and-swale while the older alluvial fan is characterized by tributaries headward incision. Cumulative frequency distributions of relief and surface roughness in Figure 8 are determined in an 8 m by 8 m moving window for the comparison of six alluvial fan units in the northeast piedmont of Laohushan. From these distributions we know that Qf6 and Qf1 reflect the prominent relief which is related to bar-and-swale and tributaries headward incision respectively,while Qf4 and Qf3 reflect the moderate relief which is related to subdued topography.Surface roughness,in addition to facilitating the characterization of individual fan units,lends insight to alluvial landform development. We summarize an alluvial landform evolutionary scheme which evolves four stages depending on characteristics of alluvial fan morphology development and features of relief and roughness. The initial stage in this study site is defined as the active alluvial fan channels with bars of coarse cobbles and boulders and swales consisting of finer-grained pebbles and sand which could be reflected by high mean relief and mean roughness values. As time goes,bar-andswale topography is still present,but an immature pavement,composed of finer grained clasts,has started to form. In the third stage,the bar-and-swale topography on the fan surface is subdued,yet still observable,with clasts ranging from pebbles to cobbles in size and there exists obvious headward tributary incision. Eventually,tributary channels form from erosion by surface runoff. Headward incision of these tributaries wears down the steep walls of channels that are incised through the stable,planar surface,transforming the oldest alluvial landforms into convex hillslopes,leaving only small remnants of the planar surface intact. Those evolutionary character suggests that alluvial fans in this area smooth out with time,however,relief or roughness would be translated to increase at greater wavelength with age until a threshold is crossed.This research suggests that relief and roughness calculated from high-resolution topographic data of this study site could reflect alluvial fan morphology development and provide constraint data to differentiate alluvial fan unit.
引文
陈涛,张培震,刘静,等.2014.机载激光雷达技术与海原断裂带的精细地貌定量化研究[J].科学通报,59(14):1293-1304.doi:10.1007/s11434-014-0199-4.CHEN Tao,ZHANG Pei-zhen,LIU-ZENG Jing,et al.2014.Quantitative study of tectonic geomorphology along Haiyuan Fault based on airborne Li DAR[J].Chinese Science Bulletin,59(14):1293-1304(in Chinese).
    何文贵,刘百篪,吕太乙,等.1994.老虎山断裂带的分段性研究[J].西北地震学报,16(3):66-72.HE Wen-gui,LIU Bai-chi,LTai-yi,et al.1994.Study on the segmentation of Laohushan fault zone[J].Northwestern Seismological Journal,16(3):66-72(in Chinese).
    廖静娟,庞自振.2009.多极化SAR数据反演额济纳冲积扇地表参数[J].地球信息科学学报,11(1):77-83,131.LIAO Jing-juan,PANG Zi-zhen.2009.Surface parameters retrieval from alluvial fan in Ejina area of Inner Mongolia using multi-polarization SAR data[J].Journal of Geo-Information Science,11(1):77-83,131(in Chinese).
    林国青,郭华东,张露.2013.基于SAR数据的干旱区冲积扇地表粗糙度反演[J].遥感技术与应用,28(4):659-665.LIN Guo-qing,Guo Hua-dong,ZHANG Lu.2013.Study on roughness inversion of alluvial fan in arid areas based on SAR data[J].Remote Sensing Technology and Application,28(4):659-665(in Chinese).
    刘百篪,袁道阳,刘小风,等.1994.老虎山活动断裂晚第四纪构造活动及古地震研究[A]//中国地震学会地震地质专业委员会编.中国活动断层研究.北京:地震出版社:58-66.LIU Bai-chi,YUAN Dao-yang,LIU Xiao-feng,et al.1994.Late Quaternary tectonic activity and paleo-earthquake study of the active fault of the Laohushan Mountain[A]//Committee of Seismogeology,Seismological Society of China(ed).Research on Active Faults in China.Seismological Press,Beijing:58-66(in Chinese).
    刘金瑞,任治坤,张会平,等.2018.海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J].地球物理学报,61(4):1281-1297.LIU Jin-rui,REN Zhi-kun,ZHANG Hui-ping,et al.2018.Late Quaternary slip rate of the Laohushan Fault within the Haiyuan fault zone and its tectonic implications[J].Chinese Journal of Geophysics,61(4):1281-1297(in Chinese).
    刘静,陈涛,张培震,等.2013.机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J].科学通报,58(1):41-45.doi:10.1360/972012-1526.LIU-ZENG Jing,CHEN Tao,ZHANG Pei-zhen,et al.2013.Illuminating the active Haiyuan Fault,China by airborne light detection and ranging[J].Chinese Science Bulletin,58(1):41-45(in Chinese).
    刘小凤,刘百箎,吕太乙,等.1994.老虎山活动断裂研究[J].华南地震,14(4):9-16.LIU Xiao-feng,LIU Bai-chi,LTai-yi,et al.1994.The research on the Laohushan active fault[J].South China Journal of Seismology,14(4):9-16(in Chinese).
    汤国安,宋佳.2006.基于DEM坡度图制图中坡度分级方法的比较研究[J].水土保持学报,20(2):157-160,192.TANG Guo-an,SONG Jia.2006.Comparison of slope classification methods in slope mapping from DEMs[J].Journal of Soil and Water Conservation,20(2):157-160,192(in Chinese).
    涂汉明,刘振东.1990.中国地势起伏度最佳统计单元的求证[J].湖北大学学报(自然科学版),12(3):266-271.TU Han-ming,LIU Zhen-dong.1990.Demonstrating on optimum statistic unit of relief amplitude in China[J].Journal of Hubei University(Natural Science),12(3):266-271(in Chinese).
    涂汉明,刘振东.1991.中国地势起伏度研究[J].测绘学报,20(4):311-319.TU Han-ming,LIU Zhen-dong.1991.Study on relief amplitude in China[J].Acta Geodaetica Et Cartographic Sinica,20(4):311-319(in Chinese).
    王康,何俊仕,于德浩,等.2013.采用Arc GIS平台的地势起伏度自动提取技术研究[J].沈阳理工大学学报,32(2):63-67.WANG Kang,HE Jun-shi,YU De-hao,et al.2013.Study on the automatic extraction technique of relief amplitude based on the Arc GIS platform[J].Journal of Shenyang Ligong University,32(2):63-67(in Chinese).
    杨天润.2013.景泰县高效农田节水推广工作的思考[J].甘肃农业,(3):35.YANG Tian-run.2013.Reflections on the promotion of efficient farmland water saving in Jingtai County[J].Gansu Agricultural,(3):35(in Chinese).
    张露,郭华东,廖静娟,等.2008.利用极化SAR数据探索同极化相关特征随地表粗糙度变化的研究[J].高技术通讯,18(12):1304-1309.ZHANG Lu,GUO Hua-dong,LIAO Jing-juan,et al.2008.Research on copolarized correlation characteristic from Bodunqi alluvial fan using full-polarized SAR data[J].Chinese High Technology Letters,18(12):1304-1309(in Chinese).
    Ari M,Kyle N,Robert F.2006.Isotopic insights into smoothening of abandoned fan surfaces,Southern California[J].Quaternary Research,66(1):109-118.
    Bacon S N,Mcdonald E V,Caldwell T G,et al.2010.Timing and distribution of alluvial fan sedimentation in response to strengthening of late Holocene ENSO variability in the Sonoran Desert,southwestern Arizona,USA[J].Quaternary Research,73(3):425-438.
    Beratan K K,Anderson R.1998.The use of Landsat Thematic Mapper data for mapping and correlation of Quaternary geomorphic surfaces in the southern Whipple Mountains,California[J].International Journal of Remote Sensing,19(12):2345-2359.
    Bull W B.1977.The alluvial-fan environment[J].Progress in Physical Geography,1(2):222-270.
    Bull W B.1991.Geomorphic Responses to Climatic Change[M].Oxford University Press,New York.
    Bull W B.2008.Tectonic Geomorphology of Mountains:A New Approach to Paleoseismology[M].Blackwell Publishing,Malden,USA.
    Burbank D W,Anderson R S.2011.Tectonic Geomorphology:Second Edition[M].Wiley,Oxford,UK.
    Chen T,Liu-Zeng J,Shao Y X,et al.2018.Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan Fault,northern Tibetan Plateau[J].Geosphere,14(3):1165-1186.
    Crouvi O,Ben-Dor E,Beyth M,et al.2006.Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing[J].Remote Sensing of Environment,104(1):103-117.
    Davis W M.1906.The geographical cycle in an arid climate[J].Journal of Geology,13(5):381-407.
    Farr T G,Chadwick O A.1996.Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains,China[J].Journal of Geophysical Research:Planets,101(E10):23091-23100.
    Frankel K L,Dolan J F.2007.Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J].Journal of Geophysical Research:Earth Surface,112(F2):F02025.
    Glenn N F,Streutker D R,Chadwick D J,et al.2006.Analysis of Li DAR-derived topographic information for characterizing and differentiating landslide morphology and activity[J].Geomorphology,73(1):131-148.
    Hetz G,Mushkin A,Dan G B,et al.2016.Estimating the age of desert alluvial surfaces with spaceborne radar data[J].Remote Sensing of Environment,184:288-301.
    Kierein-Young K S.1997.The integration of optical and radar data to characterize mineralogy and morphology of surfaces in Death Valley,California,USA.[J].International Journal of Remote Sensing,18(7):1517-1541.
    Lasserre C,Morel P H,Gaudemer Y,et al.1999.Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan Fault,Gansu,China[J].Journal of Geophysical Research,104(B8):17633-17651.
    Liu-Zeng J,Klinger Y,Xu X,et al.2007.Millennial recurrence of large earthquakes on the Haiyuan Fault near Songshan,Gansu Province,China[J].Bulletin of the Seismological Society of America,97(1):14-34.
    Lubetkin L K C,Clark M M.1988.Late Quaternary activity along the Lone Pine Fault,eastern California[J].Geological Society of America Bulletin,100(5):755-766.
    Matmon A,Schwartz D P,Finkel R,et al.2005.Dating offset fans along the Mojave section of the San Andreas Fault using cosmogenic26Al and10Be[J].Geological Society of America Bulletin,117(5-6):795.
    Nichols K K,Bierman P R,Foniri W R,et al.2006.Dates and rates of arid region geomorphic processes[J].GSAToday,16(8):4-11.
    Regmi N R.2014.Mapping Quaternary alluvial fans in the southwestern United States based on multiparameter surface roughness of lidar topographic data[J].Journal of Geophysical Research:Earth Surface,119(1):12-27.
    Ritter J B,Miller J R,Enzel Y,et al.1993.Quaternary evolution of Cedar Creek alluvial fan,Montana[J].Geomorphology,8(4):287-304.
    Wells S G,Mcfadden L D,Dohrenwend J C.1987.Influence of Late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont,eastern Mojave Desert,California[J].Quaternary Research,27(2):130-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700