用户名: 密码: 验证码:
高精度层序格架下的陆相断陷湖盆沉积体系演化:以南堡凹陷老爷庙地区东营组三段为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of Sedimentary System of Continental Faulted Lacustrine Basin under High-Precision Sequence Framework: A Case from the Third Member of Dongying Formation in Laoyemiao Area, Nanpu Sag
  • 作者:刘可行 ; 甘华军 ; 陈思 ; 赵忠新 ; 李潇鹏 ; 马江浩 ; 柯友亮 ; 王思洋 ; 巩天浩 ; 张亦康
  • 英文作者:Liu Kexing;Gan Huajun;Chen Si;Zhao Zhongxin;Li Xiaopeng;Ma Jianghao;Ke Youliang;Wang Siyang;Gong Tianhao;Zhang Yikang;Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences (Wuhan);Research Institute of Exploration and Development,Jidong Oilfield Company, PetroChina;
  • 关键词:南堡凹陷 ; 东营组 ; 同沉积断裂 ; 沉积体系 ; 控制因素
  • 英文关键词:Nanpu Sag;;Dongying Formation;;syn-depositional fault;;sedimentary system;;controlling factor
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)构造与油气资源教育部重点实验室;中国石油冀东油田分公司勘探开发研究院;
  • 出版日期:2019-05-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.186
  • 基金:十三五国家科技重大专项“大型油气田及煤层气开发南堡凹陷油气富集规律与增储领域”(2016ZX05006-006-002)
  • 语种:中文;
  • 页:DZKQ201903009
  • 页数:15
  • CN:03
  • ISSN:42-1240/P
  • 分类号:94-108
摘要
南堡凹陷为典型的陆相断陷湖盆,凹陷北部老爷庙地区是油气勘探的重要目标区。充分利用南堡凹陷岩心、测井、三维地震等资料,运用层序地层学及沉积学理论,对南堡凹陷老爷庙地区东营组三段沉积特征及其主控因素进行了研究。结果表明,南堡凹陷老爷庙地区东三段为一完整的三级层序,主要发育扇三角洲、湖泊和浊积扇3种沉积体系类型。从低位体系域(LST)到高位体系域(HST),扇体展布范围呈现"大-小-大"的演化特点,扇三角洲沉积中心总体上由东向西迁移;区内构造活动对沉积体系的分布和演化的控制作用显著,同沉积断裂的活动性差异控制了扇体发育的规模和位置,构造坡折带控制着沉积相带纵向分异特征,构造古地貌单元的空间配置控制着沉积微相的规模和形态;在此基础上,在研究区内识别出梳状断裂式、转换带式、滚动背斜式和多级断阶式4种砂体空间分布样式,对该区沉积模式的建立和有利储集相带的预测都具有重要指导意义。
        The Nanpu Sag is a typical lacustrine rift basin in Bohai Bay Basin. The studied Laoyemiao area in the north of the depression is an important target area for oil and gas exploration.This paper makes full use of the core, logging and 3 D seismic data of Nanpu Sag, and the theory of sequence stratigraphy and sedimentology to study the sedimentary characteristics and main controlling factors of the third member of Dongying Formation in Laoyemiao area of Nanpu Sag. The results show that the third member of Dongying Formation in the area is a single three-level sequence, with three types of sedimentary systems: fan delta, lake and turbidite fan. From the low-level system domain(LST) to the high-level system domain(HST), the fan-distribution range shows the evolution characteristics of "large-small-large". The fan-delta sedimentary center migrates from east to west in general. The tectonic activities have a significant controlling effect on the distribution and evolution of the sedimentary system. The difference in activity with the syn-depositional faults controls the scale and location of the fan development.The structural slope-break zone controls the longitudinal differentiation of the sedimentary facies.The spatial configuration of the tectonic paleo-geomorphic units controls the scale and shape of the sedimentary microfacies. On this basis, the spatial distribution pattern of sedimentary sand bodies in the area is summarized: conversion belt type, dressing fracture type, multi-level step type and lateral anticline type,which has important significance for the establishment of sedimentary model and prediction of favorable reservoirs.
引文
[1] Bridge J,Demicco R.Earth surface processes,landforms and sediment deposits[M].New York:Cambridge University Press,2008.
    [2] Somme T O,Helland-Hansen W,Martinsen O J,et al.Relationships between morphological and sedimentological parameters in source-to-sink systems:A basis for predicting semiquantitative characteristics in subsurface systems[J].Basin Research,2009(21):361-387.
    [3] Somme T O,Jackson C A L,Vaksdal M.Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the M?r-Tr?ndelag area of southern Norway:Part 1-Depositional setting and fan evolution[J].Basin Research,2013(25):489-511.
    [4] Somme T O,Martinsen O J,Thurmond J B.Reconstructing morphological and depositional characteristics in subsurface sedimentary systems:An example from the Manstrichtian-Danian Ormen Lange,More Basin,Norwegian Sea[J].American Association of Petroleum Geology,2009,93:1347-1377.
    [5] Wood L J,Ethridge F.Quantitative seismic geomorphology:Visualizing the future of paleo-landscape research[C]//Geological Society of America.2012 annual meeting Abstracts with Programs.[S.l.]:Geological Society of America,2012,44:295.
    [6] Cullen A,Reemst P,Henstra G,et al.Rifting of the South China Sea:New perspective[J].Petroleum Geoscience,2010(16):273-282.
    [7] Donders T H,Weijers J W H,Munsterman D K,et al.Strong climate coupling of terrestrial and marine environments in the Miocene of Northwest Europe[J].Earth and Planetary Science Letters,2009,281:215-225.
    [8] Hayes D,Nissen D.The South China Sea margins:Implication for rifting contrasts[J].Earth and Planetary Science Letters,2005,237:601-616.
    [9] Hietpas J,Samson S,Moecher D,et al.Recovering tectonic events from the sedimentary record:Detrital monazite plays in high fidelity[J].Geology,2010,38:167-170.
    [10] Lin Changsong,Xia Qinglong,Shi Hesheng,et al.Geomorphological evolution,source to sink system and basin analysis[J].Earth Science Frontiers,2015(1):9-20.
    [11] Romans B W,Castelltort S,Covault J A,et al.Environmental signal propagation in sedimentary systems[J].Earth-Science Reviews,2016,153:7-29.
    [12] Xia Shiqiang,Dong Guiyu,Zhang Zhenguo,et al.Sequence architecture and depositional evolution in Lufeng Depression,Pearl River Mouth Basin,South China Sea Part B:The shore deposits of Zhuhai Formation[J].Geological Journal,2018:1-13.
    [13] 刘延莉,邱春光,邓宏文,等.冀东南堡凹陷古近系东营组构造对扇三角洲的控制作用[J].石油与天然气地质,2008,29(1):95-101.
    [14] 姜华,王华,林正良,等.南堡凹陷古近纪幕式裂陷作用及其对沉积充填的控制[J].沉积学报,2009,27(5):976-982.
    [15] 王华,姜华,林正良,等.南堡凹陷东营组同沉积构造活动性与沉积格局的配置关系研究[J].地球科学与环境学报,2011,33(1):62-68.
    [16] 杨晓利,张自力,孙明,等.同沉积断层控砂模式:以南堡凹陷南部地区Es1段为例[J].石油与天然气地质,2014,35(4):527-533.
    [17] 曹中宏,贺锋,郑治宇,等.南堡凹陷老爷庙地区古近系东营组沉积体系及其主控因素[J].石油天然气学报,2013,35(2):7-10.
    [18] 康海亮,林畅松,刘晓,等.南堡凹陷北部东营组同沉积断裂对沉积体系及岩性圈闭的控制作用[J].现代地质,2016,30(2):286-293.
    [19] 张翠梅.渤海湾盆地南堡凹陷构造-沉积分析[D].武汉:中国地质大学(武汉),2010.
    [20] 李宏义,姜振学,董月霞,等.南堡凹陷老爷庙油田新近系储层特征与油气成藏[J].沉积与特提斯地质,2007(4):85-90.
    [21] 王华.层序地层学基本原理方法与应用[M].武汉:中国地质大学出版社,2008.
    [22] 刘红超,孙惠贤,白雪,等.物探技术在富油区带外前缘效益区块刻画中的研究[J].中国石油石化,2017(8):98-99.
    [23] 王华,周立宏,韩国猛,等.陆相湖盆大型重力流发育的成因机制及其优质储层特征研究:以歧口凹陷沙河街组一段为例[J].地球科学,2018,43(10):3423-3444.
    [24] 于兴和.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002.
    [25] 王观宏.南堡凹陷东营组堆积期构造活动的“双强效应”及其对沉积的控制[D].武汉:中国地质大学(武汉),2016.
    [26] 郭娟娟,魏东涛,潘建国,等.准噶尔盆地东部西泉地区下三叠统高分辨层序地层与砂体预测[J].高校地质学报,2014,20(1):131-138.
    [27] 张亚雄,朱筱敏,陈欢庆,等.琼东南盆地渐新统陵水组坡折带类型及层序地层样式[J].石油与天然气地质,2014,35(4):473-479.
    [28] 李增学,宋广增,王东东,等.琼东南盆地渐新统煤系(扇)辫状河三角洲特征[J].地球科学,2018,43(10):3471-3484.
    [29] 柯友亮,郝杰,王华,等.基于叠后地震数据的南堡凹陷高南斜坡带三角洲扇体识别及演化特征[J].地质科技情报,2019,23(2):89-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700