用户名: 密码: 验证码:
深水砂质碎屑流沉积:概念、沉积过程与沉积特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deep-water sandy debris flow deposits: concepts, sedimentary processes and characteristics
  • 作者:金杰华 ; 操应长 ; 王健 ; 杨田 ; 周磊
  • 英文作者:JIN Jiehua;CAO Yingchang;WANG Jian;YANG Tian;ZHOU Lei;School of Geoscience China University of Petroleum;Exploration and Development Research Institute of Sinopec Shengli Oilfield Company;Postdoctoral Scientific Research Working Station of Sinopec Shengli Oilfield Company;
  • 关键词:砂质碎屑流 ; 高密度浊流 ; 沉积动力学 ; 沉积特征 ; 深水块状砂岩
  • 英文关键词:sandy debris flows;;high-density turbidity;;sediment dynamics;;sediment characteristics;;deep-water massive sandstone
  • 中文刊名:DZLP
  • 英文刊名:Geological Review
  • 机构:中国石油大学(华东)地球科学与技术学院;中国石化胜利油田分公司勘探开发研究院;中国石油化工集团公司胜利石油管理局博士后科研工作站;
  • 出版日期:2019-05-15
  • 出版单位:地质论评
  • 年:2019
  • 期:v.65
  • 基金:国家自然科学基金资助项目(编号:U1762217);; 国家科技重大专项专题研究项目(编号:2016ZX05006-003);; 山东省自然科学基金博士基金项目(编号:ZR2018BD010);; 中央高校基本科研业务费专项资金项目(编号:16CX06036A)的成果~~
  • 语种:中文;
  • 页:DZLP201903016
  • 页数:14
  • CN:03
  • ISSN:11-1952/P
  • 分类号:171-184
摘要
在总结国内外相关文献的基础上,对砂质碎屑流的相关概念、沉积动力学过程及沉积特征进行系统梳理,并对争议问题进行了讨论。砂质碎屑流是一种富砂质具塑性流变性质的宾汉塑性流体,代表一个从黏性至非黏性碎屑流连续系列,具有中—高碎屑浓度(体积浓度25%~95%)、较低的泥质含量(体积浓度可低至0. 5%)、湍流不发育。其沉积物以块状砂岩、含碎屑逆粒序砂岩沉积为代表,局部可见滑动剪切构造和液化漩涡构造。砂质碎屑流的形成多经历滑动→滑塌→砂质碎屑流→浊流的有序演化过程;滑水作用和基底剪切润湿作用是克服砂质碎屑流与基底剪切摩擦拖拽的重要机制,流体强度则是克服上覆环境水体混入稀释的重要原因;砂质碎屑流头部和边部优先固结沉积,进而控制流体整体沉降。砂质碎屑流是形成深水块状砂岩的主要原因之一,砂质碎屑流在相对低流体效率的深水重力流沉积环境广泛发育。
        On the basis of summarizing relevant literatures at home and abroad,the related concepts,sedimentary dynamics and sedimentary characteristics of sandy debris flow are systematically sorted out,and the controversial issues are discussed. Sandy debris flow is a kind of Binghan plastic fluid with medium to high detrital concentration( volume concentration ranges from 25% to 95%) and low mud matrix content( minim volume concentration 0. 5%). It represents a series of debris flow from cohesive to no cohesive flow without obvious turbulence. Sandy debris flow deposits are representing by massive sandstone,sandstone with inverse floating mud clasts. Slump shear structures and liquefied swirly patchy texture can be observed occasionally. The formation of sandy debris flow mostly undergoes the orderly evolution process of sliding→slipping→sand debris flow→turbidity flow. Hydroplaning and basal shear wetting are the main mechanisms to overcome shear friction between sandy debris flow and the base. Fluid strength is an important reason to overcome the dilution of the overlying ambient water. Debris flow has the characteristics of preferential deposition and consolidation of the head and the edge,thus controlling the overall settlement of the fluid. Sandy debris flow is one of the main reasons for the formation of deep-water massive sandstone,which is widely developed in a relatively low fluid efficiency deep water gravity flow deposition environment.
引文
操应长,杨田,王艳忠,张少敏,王思佳,张青青,王心怿.2017a.深水碎屑流与浊流混合事件层类型及成因机制.地学前缘,24(3):234~248.
    操应长,杨田,王艳忠,李文强.2017b.超临界沉积物重力流形成演化及特征.石油学报,38(6):607~621.
    耳闯,顾家裕,牛嘉玉,程妮,韩少飞.2010.重力驱动作用—滦平盆地下白垩统西瓜园组沉积时期主要的搬运机制.地质论评,56(3):312~320
    方爱民,李继亮,侯泉林.1998.浊流及相关重力流沉积研究综述.地质论评,44(3):270~280.
    高红灿,郑荣才,魏钦廉,陈发亮,陈君,朱登锋,刘云.2012.碎屑流与浊流的流体性质及沉积特征研究进展.地球科学进展,27(8):815~827
    李存磊,任伟伟,唐明明.2012.流体性质转换机制在重力流沉积体系分析中应用初探.地质论评,58(2):285~296.
    李磊,王英民,徐强,黄志超.2012.被动陆缘深水重力流沉积单元及沉积体系—以尼日尔三角洲和珠江口盆地白云凹陷深水区为例.地质论评,58(5):846~853.
    李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平.2011.砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用.地球科学进展,26(3):286~294.
    李相博,刘化清,完颜容,魏立花,廖建波,马玉虎.2009.鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现.岩性油气藏,21(4):19~21.
    李相博,刘化清,张忠义,袁效奇,完颜容,牛海青,廖建波,王菁.2014.深水块状砂岩碎屑流成因的直接证据:“泥包砾”结构—以鄂尔多斯盆地上三叠统延长组研究为例.沉积学报,32(4):611~622.
    李相博,王菁,廖建波,龙礼文,潘树新,李智勇,完颜容.2015.陆相盆地深水沉积中的块体搬运作用与搬运机理研究—以鄂尔多斯盆地延长组为例.天然气地球科学,26(4):625~633.
    李相博,卫平生,刘化清,王菁.2013.浅谈沉积物重力流分类与深水沉积模式.地质论评,59(4):607~614.
    廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇.2013.鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式.地学前缘,20(2):29~39.
    潘树新,郑荣才,卫平生,王天奇,陈彬淘,梁苏娟.2013.陆相湖盆块体搬运体的沉积特征、识别标志与形成机制.岩性油气藏,25(2):9~25.
    裴羽,何幼斌,李华,肖彬.2015.高密度浊流和砂质碎屑流关系的探讨.地质论评,61(6):1281~1292.
    谈明轩,朱筱敏,耿名扬,刘常妮.2016.沉积物重力流流体转化沉积—混合事件层.沉积学报,34(6):1108~1119.
    王德坪,刘守义.1987.东营盆地渐新世早期前三角洲缓坡区的泥石流砂质碎屑沉积.沉积学报,5(4):14~24.
    王德坪.1991.湖相内成碎屑流的沉积及形成机制.地质学报,65(4) :299~316.
    鲜本忠,安思奇,施文华.2014.水下碎屑流沉积:深水沉积研究热点与进展.地质论评,60(1):39~51.
    鲜本忠,万锦峰,董艳蕾,马乾,张建国.2013.湖相深水块状砂岩特征、成因及发育模式—以南堡凹陷东营组为例.岩石学报,29(9):3287~3299.
    鲜本忠,万锦峰,姜在兴,张建国,李振鹏,佘源琦.2012.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例.地学前缘,19(1):121~135.
    杨仁超,何治亮,邱桂强,金之钧,孙冬胜,金晓辉.2014.鄂尔多斯盆地南部晚三叠世重力流沉积体系.石油勘探与开发,41(6):661~670.
    杨田,操应长,王艳忠,张少敏.2015.深水重力流类型、沉积特征及成因机制—以济阳坳陷沙河街组三段中亚段为例.石油学报,36(8):1~12.
    袁静,梁绘媛,梁兵,董道涛,闵伟,宋璠,李鹤永.2016.湖相重力流沉积特征及发育模式—以苏北盆地高邮凹陷深凹带戴南组为例.石油学报,37(3):348~359.
    邹才能,赵政璋,杨华,付金华,朱如凯,袁选俊,王岚.2009.陆相湖盆深水砂质碎屑流成因机制与分布特征—以鄂尔多斯盆地为例.沉积学报,27(6):1065~1075.
    Baas J H.2004.Conditions for formation of massive turbiditic sandstones by primary depositional processes.Sedimentary Geology,166:293~310.
    Breien H,De Blasio F V,Elverh?i A,Nystuen J P,Harbitz C B.2010.Transport mechanisms of sand in deep-marine environments——insights based on laboratory experiments.Journal of Sedimentary Research,80:975~990.
    Cao Y C,Wang Y Z,Gluyas J G,Liu H M,Song M S.2018.Depositional model for lacustrine nearshore subaqueous fans in a rift basin:The Eocene Shahejie Formation,Dongying Sag,Bohai Bay Basin,China.Sedimentology,Online,https://doi.org/10.1111/sed.12459.
    Cao Yingchang,Yang Tian,Wang Yanzhong,Zhang Shaomin,Wang Sijia,Zhang Qingqing,Wang Xinyi.2017a&.Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current.Earth Science Frontiers,24(3):234~248.
    Cao Yingchang,Yang Tian,Wang Yanzhong,Li Wenqiang.2017b&.Formation,evolution and sedimentary characteristics of super-critical sediment gravity-flow.Acta Petrolei Sinica,38(6):607~621.
    Cartigny M J B,Eggenhuisen J T,Hansen E W M,Postma G.2013.Concentration—dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies models.Journal of Sedimentary Research,83:1046~1064.
    Clare M A,Hughes C J E,Talling P J,Cartigny M J B,Pratomo D G.2016.Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta.Earth and Planetary Science Letters,450:208~220.
    Covault J A,Kostic S,Paull C K,Ryan H F,Fildani A,Talling P.2014.Submarine channel initiation,filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps.Sedimentology,61:1031~1054.
    Covault J A.2011.Submarine fans and canyon—channel systems:A review of processes,products,and models.Nature Education Knowledge,3(10):4.
    De Blasio F V,Engvik L,Harbitz C B,Elverh?i A.2004.Hydroplaning and submarine debris flows.Journal of geophysical research,109:C01002.
    De Leeuw J,Eggenhuisen J T,Cartigny M J.2016.Morphodynamics of submarine channel inception revealed by new experimental approach.Nature Communication,7:10886.
    Er Chuang,Gu Jiayu,Niu Jiayu,Cheng Ni,Han Shaofei.2010&.Gravity-driven processes:A more important transport mechanism of deposits in Xiguayuan Formation of Lower Cretaceous in Luanping Basin,Northern Hebei.Geological Review,56(3):312~320
    Fang Aimin,Li Jiliang,Hou Quanlin.1998&.Sedimentation of turbidity currents and relative gravity flows:A review.Geological Review,44(3):270~280.
    Felix M,Leszczynski S,Slaczka A,Uchman A,Amy L,Peakall J.2009.Field expressions of the transformation of debris ?ows into turbidity currents,with examples from the Polish Carpathians and the French Maritime Alps.Marine and Petroleum Geology,26:2011~2020.
    Felix M,Peakal J.2006.Transformation of debris flows into turbidity currents:mechanisms inferred from laboratory experiments.Sedimentology,53:107~123.
    Fildani A,Hubbard S M,Covault J A,Maier K L,Romans B W,Traer M,Rowland J C.2013.Erosion at inception of deep-sea channels.Marine and Petroleum Geology,41:48~61.
    Fisher R.1983.Flow transformations in sediment gravity flows.Geology,11(5):273~274.
    Gani R M.2004.From Turbid to Lucid:A straightforward approach to sediment gravity flows and their deposits.The Sedimentary Record,2:4~8.
    Gao Hongcan,Zheng Rongcai,Wei Qinlian,Wei Qinlian,Chen Faliang,Chen Jun,Zhu Dengfeng,Liu Yun.2012&.Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents.Advances in Earth Science,27(8):815~827.
    Girard F,Ghienne J F,Rubino J L.2012.Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a Late Ordovician proglacial delta (Murzuq Basin,SW Libya).Journal of Sedimentary Research,82:688~708.
    Hampton M A.1972.The role of subaqueous debris flow in generating turbidity currents.Sedimentary Petrology,42(4):775~793.
    Hampton M.1975.Competence of fine-grained debris flows.Journal of Sedimentary Petrology,45:834~844.
    Harbitz C B,G Parker A,Elverh?i D,Mohrig,P Harff .2003.Hydroplaning of subaqueous debris flows and glide blocks:Analytical solutions and discussions,Journal of Geophysical Reserch,108(B7):2349.
    Haughton P D W,Barker S P,Mccaffrey W D.2003.“Linked” debrites in sand-rich turbidite systems——origin and significance.Sedimentology,50:459~482.
    Haughton P,Davis C,McCaffrey W,Barker S.2009.Hybrid sediment gravity flow deposits——classification,origin and significance.Marine and Petroleum Geology,26:1900~1918.
    Hughes Clarke J E.2016.First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics.Nat.Commun.,7:11896.
    Hutchinson J N.1986.A sliding—consolidation model for flow slides:Canadian Geotechnical Journal,23:115~126.
    Ilstada T,Elverhbia A,Isslera D,Marr J G.2004.Subaqueous debris flow behaviour and its dependence on the sand/clay ratio:a laboratory study using particle tracking.Marine Geology,213:415~438.
    Ito M,Saito T.2006.Gravel waves in an ancient canyon:Analogous features and formative processes of coarse-grained bedforms in a submarine-fan system,the Lower Pleistocene of the Boso Peninsula,Japan.Journal of Sedimentary Research,76(12):1274~1283.
    Ito M.2010.Are coarse-grained sediment waves formed as downstream-migrating antidunes?Insight from an Early Pleistocene submarine canyon on the Boso Peninsula,Japan.Sedimentary Geology,226:1~8.
    Iverson R M.1997.The physics of debris flows.Reviewsof Geophysics,35(3):245~296.
    Johnson A M.1970.Physical Processes in Geology [M].San Francisco:Freeman:1~577.
    Kneller B C,Branney M J.1995.Sustained high-density turbidity currents and the deposition of thick massive sands.Sedimentology,42:607~616.
    Kuenen P H,Migliorini C I.1950.Turbidity currents as a cause of graded bedding.The Journal of Geology,58:91~127.
    Li Cunlei,Ren Weiwei,Tang Mingming.2012&.Preliminary study on gravity flow depositional system based on fluid properties conversion theory.Geological Review,58(2):285~296.
    Li Lei,Wang Yingmin,Xu Qiang,Huang Zhichao.2012&.Deep-water gravity flow deposional elements and deposional systems in massive marine:Case studies in deep-water areas of Niger Delta and Baiyun Sag,Pearl River Mouth Basin.Geological Review,58(5):846~853.
    Li S L,Shan X,Gong C L,Yu X H.2017.Classification,formation,and transport mechanisms of mud clasts.International geology review,59:1609~1620.
    Li X B,Chen Q,Liu H,Wan Y,Wei L,Liao J B,Long L.2011.Features of sandy debris flows of the Yanchang Formation in the Ordos Basin and its oil and gas exploration significance.Acta Geologica Sinica (English Edition),85:1187~1202.
    Li X B,Yang Z L,Wang J,Liu H Q,Chen Q L,Wanyan R,Liao J B,Li Z Y.2016.Mud-coated intraclasts:a criterion for recognizing sandy mass-transport deposits——Deep-lacustrine massive sandstone of the Upper Triassic Yanchang Formation,Ordos Basin,Central China.Journal of Asian Earth Sciences,129:98~116.
    Li X,Liu H,Pan S,Chen Q,WanYan R,Xu W,Wang H,Huang J,Wang,J.2018.Subaqueous sandy mass-transport deposits in lacustrine facies of the Upper Triassic Yanchang Formation,Ordos Basin,Central China,Marine and Petroleum Geology,doi:10.1016/j.marpetgeo.2018.06.019.
    Li Xiangbo,Fu Jinhua,Chen Qilin,Liu Xianyang,Liu Huaqing,Guo Yanru,Wanyan Rong,Liao Jianbo,Wei Lihua,Huang Junping.2011&.The concept of sandy debris flow and its application in the Yanchang Formation deep water sedimentation of the Ordos Basin.Advances in Earth Science,26(3):286~294.
    Li Xiangbo,Liu Huaqing,Wanyan Rong,Wei Lihua,Liao Jianbo,Ma Yuhu.2009&.First discovery of the sandy debris flow from the Triassic Yanchang Formation,Ordos Basin.Lithologic Reservoirs,21(4):19~21.
    Li Xiangbo,Liu Huaqing,Zhang Zhongyi,Yuan xiaoqi,Wanyan Rong,Niu Haiqing,Liao Jianbo,Wang Jing.2014.“Argillaceous parcel” structure:A direct evidence of debris flow origin of deep-water massive sandstone of Yanchang Formation,Upper Triassic,Ordos Basin.Acta Sedimentologica Sinica,32(4):611~622.
    Li Xiangbo,Wang Jing,Liao Jianbo,Long Liwen,Pan Shuxin,Li Zhiyong,Wanyan Rong.2015&.The mechanism of transport process of deep-water sedimentation in lacustrine basin:A case study of deep-water sandstone in Yanchang Formation,Ordos Basin.Natural Gas Geoscience,26(4):625~633.
    Li Xiangbo,Wei Pingsheng,Liu Huaqing,Wang Jing.2013&.Discussion on the classification of sediment gravity flow and the deep-water sedimentary model.Geological Review,59(4):607~614.
    Liao Jijia,Zhu Xiaomin,Deng Xiuqing,Sun Bo,Hui Xiao.2013&.Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong Area in Ordos Basin.Earth Science Frontiers,2013,20(2):29~39.
    Liu J P,Xian B Z,Wang J H,Ji Y L,Liu Z Y,Liu S J.2017.Sedimentary architecture of a sub~lacustrine debris fan:Eocene Dongying Depression,Bohai Bay Basin,east China.Sedimentary Geology,362:66~82.
    Lowe D R,1982.Sediment gravity flows:depositional models with special reference to the deposits of high–density turbidity currents.Journal of Sedimentary Petroleum,52:279~297.
    Major J J,Iverson R M.1999.Debris-flow deposition:Effects of pore-fluid pressure and friction concentrated at flow margins.GSA Bulletin,111(10):1424~1434.
    Malarkey J,Baas J H,Hope J A,Aspden R J,Parsons D R,Peakall J,Paterson D M,Schindler R J,Ye L,Lichtman I D,Bass S J,Davies A G,Manning A J,Thorne P D.2015.The pervasive role of biological cohesion in bedform development.Nature Communications,6(6257):1~6.
    Marr J G,Harff P A,Shanmugam G,Parker G.2001.Experiments on subaqueous sandy gravity flows:The role of clay and water content in flow dynamics and depositional structures.GSA Bulletin,113(11):1377~1386.
    Middleton G V.1973.Johannes Walther's law of the correlation of facies.Geological Society of America Bulletin,84:979~988.
    Mohrig D,Whipple K X,Hondzo M,Hondzo M.Parke G.1998.Hydroplaning of subaqueous debris flows.GSA Bulletin,110:387~394.
    Mulder T,Syvitski J P M.1995.Turbidity currents generated at river mouths during exceptional discharges to the world oceans.Journal of Geology,103:285 ~299.
    Mulder T,Chapron E.2011.Flood deposits in continental and marine environments:Character and significance.In:Slatt R M and Zavala C.Sediment Transfer from Shelf to Deep Water——Revisiting the Delivery System.AAPG Studies in Geology,61:1~30.
    Mutti E,Bernoulli D,Lucchi F R,Tinterri R.2009.Turbidites and turbidity currents from Alpine “flysch” to the exploration of continental margins.Sedimentology,56:267~318.
    Mutti E,Remacha E,Rinterri T,Mavilla N,Angella S,Fava L.1999.Facies tracts of highly-efficient turbidity currents in large and elongate foreland basins,and their implications for basin analysis and exploration:Annual Meeting of Italian Sedimentology Group,CNR,61,Serie 3C:187~190.
    Mutti E,Tinterri R,Benevelli G,Biase D D,Cavanna G.2003.Deltaic,mixed and turbidite sedimentation of ancient foreland basins.Marine and Petroleum Geology,20:733~755.
    Mutti E.1992.Turbidite Sandstones.Agip Spec.Publ.,Istituto de geologia,Universita di Parma,Agip S.p.A.
    Normark.1978.Fan valleys,channels,and depositional lobes on modern submarine fans:Characters for recognition of sandy turbidite environments.AAPG Bulletin,62:912~931.
    Pan Shuxin,Zheng Rongcai,Wei Pingsheng,Wang Tianqi,Chen Bingtao,Liang Sujuan.2013&.Deposition characteristics,recognition mark and form mechanism of mass transport deposits in terrestrial Lake Basin.Lithologic Reservoirs,25(2):9~25.
    Pei Yu,He Youbin,Li Hua,Xiao Bin.2015&.Discuss about relationship between high-density turbidity current and sandy debris flow.Geological Review,61(6):1281~1292.
    Piper D J W,Normark W R.2009.Processes that initiate turbidity currents and their influence on turbidites:A marine geology perspective.Journal of Sedimentary Research,79:347~362.
    Postma G,Cartigny M J B.2014.Supercritical and subcritical turbidity currents and their deposits——A synthesis.Geology,42:987~990.
    Postma G,Cartigny M,Kleverlaan K.2009.Structureless,coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?Sedimentary Geology,219:1~6.
    Postma G,Kleverlaan K,Cartigny M J B.2014.Recognition of cyclic steps in sandy and gravelly turbidite sequences,and consequences for the Bouma facies model.Sedimentology,61:2268~2290.
    Rodine J D,Johnson A M.1976.The ability of debris,heavily freighted with coarse clastic material,to flow on gentle slopes.Sedimentology,23(2):213~234.
    Sanders J E.1965.Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms.In:Middleton G V.ed.Primary Sedimentary Structures and Their Hydrodynamic Interpretation:Society of Economic Paleontologists and Mineralogists Special Publication,12:192~219.
    Shanmugam G,Moiola R J.1995.Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma.American Association of Petroleum Geologists Bulletin,79:672~695.
    Shanmugam G.1996.High-density turbidity currents:Are they sandy debris flows?Journal of Sedimentary Research,66:2~10.
    Shanmugam G.1997.The Bouma Sequence and the turbidite mind set.Earth Science Reviews,42:201~229.
    Shanmugam G.2000.50 years of the turbidite paradigm (1950s~1990s):deep water processes and facies models——a critical perspective.Marine and Petroleum Geology,17:285~342.
    Shanmugam G.2006.Deep-water Processes and Facies Models:Implications for Sandstone Petroleum Reservoirs.Amsterdam:Elsevier:1~52.
    Shanmugam G.2012.New Perspectives on Deep-water Sandstones:Origin,Recognition,Initiation,and Reservoir Quality.Amsterdam:Elsevier:1~52.
    Shanmugam G.2013.New perspectives on deep-water sandstones:Implications.Petroleum Exploration Development,40:316~324.
    Shanmugam G.2017.Global case studies of soft-sediment deformation structures (SSDS):Definitions,classifications,advances,origins,and problems.Journal of Palaeogeography,6(4):251~320.
    Sohn Y K.2000.Deposional process of submarine debris flows in the Miocene fan deltas,Pohang Basin,Se Korea with special reference to flow transformation.Journal of Sedimentary research,70(3):491~503.
    Stevenson C J,Peakall J.2010.Effects of topography on lofting gravity flows:Implications for the deposition of deep-water massive sands.Marine and Petroleum Geology,27:1366~1378.
    Stow D A V,Johansson M.2000b.Deep-water massive sands:nature,origin and hydrocarbon implications.Marine and Petroleum Geology,17:145~174.
    Stow D A V,Mayall M.2000a.Deep-water sedimentary systems:New models for the 21st century.Marine and Petroleum Geology,17:125~135.
    Symons W O,Sumner E J,Talling P J,Cartigny M J B,Clare M A.2016.Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows.Marine Geology,371:130~148.
    Talling P J,Amy L A,Wynn R B,Peakall J,Robinson M.2004.Beds comprising debrite sandwiched within co-genetic turbidite:origin and widespread occurrence in distal depositional environments.Sedimentology,51:163~194.
    Talling P J,Amy L A,Wynn R B,Blackbourn G,Gibson O.2007.Evolution of turbidity currents deduced from extensive thin turbidites:marnoso arenacea formation (miocene),italian apennines.Journal of Sedimentary Research,77:172~196.
    Talling P J,Masson D G,Sumner E J,Malgesini G.2012.Subaqueous sediment density flows:Depositional processes and deposit types.Sedimentology,59:1937~2003.
    Talling P J,Paull C K,Piper D J W.2013b.How are subaqueous sediment density flows triggered,what is their internal structure and how does it evolve?Direct observations from monitoring of active flows.Earth-Science Reviews,125:244~287.
    Talling P J,Peakall J,Sparks R S J,Cofaigh C.ó,Dowdeswell J A,Felix M,Wynn R B,Baas J H,Hogg A J,Masson D G,Taylor J,Weaver P P E.2003.Experimental constraints on shear mixing rates and processes:implications for the dilution of submarine debris flows.Geological Society,London,Special Publications:89~103.
    Talling P J.2013.Hybrid submarine flows comprising turbidity current and cohesive debris flow:Deposits,theoretical and experimental analyses,and generalized models.Geosphere,9 (3):460~488.
    Talling P J,Allin J,Armintage D A,et al.2015.Key future directions for research on turbidity currents and their deposits.Journal of Sedimentary Research,85:153~169.
    Tan Mingxuan,Zhu Xiaomin,Geng Mingyang,Liu Changni.2016&.The flow transforming deposits of sedimentary gravity flow——Hybrid event bed.Acta Sedimentologica Sinica,34(6):1108~1119.
    Van de Lageweg W I,McLelland S J,Parsons D R.2018.Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate.Earth Surface Dynamics,6:203~215.
    Walker R G.1978.Deep-water sandstone facies and ancient submarine fans-models for exploration for stratigraphic traps.AAPG Bulletin,62:932~966.
    Waltham D.2004.Flow transformations in particulate gravity currents.Journal of Sedimentary Research,74:129~134.
    Wang Deping,Liu Shouyi.1987&.Debris Flow sediments of sandy clastic on the gentle slope area of prodelta in Oligocene,Dongying Basin.Acta Sedimentologica Sinica,5(4):14~24.
    Wang Deping.1991&.The sedimentation and formation mechanism of lacustrine endogenic debris flow.Acta Geologica Sinica,65(4) :299~316.
    Wooldridge L J,Worden R H,Griffiths J,Thompson A,Chung P.2017.Biofilm origin of clay-coated sand grains.Geology,45 (10):875~878.
    Xian B Z,Liu J P,Dong Y L,Lu Z Y,He Y X,Wang J H.2017.Classification and facies sequence model of subaqueous debris flows.Acta Geologica Sinica (English Edition),91(2):751~752.
    Xian B Z,Wang J H,Liu J P,Dong Y L,Gong C L,Lu Z Y.2018.Deltafed turbidites in a lacustrine rift basin:the Eocene Dongying depression,Bohai Bay Basin,East China,Australian Journal of Earth Sciences,65(1):135~151.
    Xian Benzhong,An Siqi,Shi Wenhua.2014&.Subaqueous debris flow:Hotspots and advances of deep-water sedimention.Geological Review,60(1):39~51.
    Xian Benzhong,Wan Jinfeng,Dong Yanlei,Ma Qian,Zhang Jianguo.2013&.Sedimentary characteristics,origin and model of lacustrine deep-water massive sandstone:An example from Dongying Formation in Nanpu depression.Acta Petrologica Sinica,29(9):3287~3299.
    Xian benzhong,Wan Jinfeng,Jiang Zaixing,Zhang Jianguo,Li Zhenpeng,She Yuanqi.2012&.Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin:A case study from Dongying Formation in Nanpu Depression.Earth Science Frontiers,19(1):121~135.
    Xu Q H,Shi W Z,Xie X Y,Manger W,McGuire P,Zhang X M,Wang R,Xu Z.2016.Deep-lacustrine sandy debrites and turbidites in the lower Triassic Yanchang Formation,southeast Ordos Basin,central China:Facies distribution and reservoir quality.Marine and Petroleum Geology,77:1098~1107.
    Yang Renchao,He Zhiliang,Qiu Guiqiang,Jin Zhijun,Sun Dongsheng,Jin Xiaohui.2014&.Late Triassic gravity flow depositional systems in the southern Ordos Basin.Petroleum Exploration and Development,41(6):661~670.
    Yang T,Cao Y C,Liu K Y,Wang Y Z,Zavala C,Friis H,Song M S,Yuan G H,Liang C,Xi K L,Wang J.2019.Genesis and depositional model of subaqueous sediment gravity-flow deposits in a lacustrine rift basin as exemplified by the Eocene Shahejie Formation in the Jiyang Depression,Eastern China.Marine and Petroleum Geology,1023:231~257.
    Yang T,Cao Y C,Wang Y Z,Friis H,Haile B G,Xi K L,Zhang H N.2016.The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs:a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag.Pettroleum Sciense.13:204~224.
    Yang T,Cao Y,Friis H,Liu K Y,Wang Y Z.2018.Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island,Eastern China.Australian Journal of Earth Sciences,64(4):517~534.
    Yang Tian,Cao Yingchang,Wang Yanzhong,Zhang Shaomin.2015&.Types,Sedimentary Characteristics and genetic mechanisms of deep-water gravity flows:a case study of the middle submember in Member 3 of Shahejie Formation in Jiyang depression.Acta Petrolei Sinica,36(8):1~12.
    Yuan Jing,Liang Huiyuan,Liang Bing,Dong Daotao,Min Wei,Song Fan,Li Heyong.2016&.Sedimentary characteristics and development model of lacustrine gravity flow:a case study of Dainan Formation in deep sag belt of Gaoyou depression,Northern Jiangsu Basin.Acta Petrolei Sinica,37(3):348~359.
    Zavala C,Arcuri M.2016.Intrabasinal and extrabasinal turbidites:Origin and distinctive characteristics.Sedimentary Geology,337:36~54.
    Zavala C,Pan S X.2018.Hyperpycnal flows and hyperpycnites:Origin and distinctive characteristics.Lithologic Reservoirs,30 (1):1~27.
    Zou C,Wang L,Li Y,Tao S,Hou L.2012.Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,central China.Sedimentary Geology,265~266:143~155.
    Zou Caineng,Zhao Zhengzhang,Yang Hua,Fu JinHua,Zhu Rukai,Yuan Xuanjun,Wang Lan.2009&.Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin.Acta Sedimentologica Sinica,27(6):1065~1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700